This can also be written as A = s^2 and the area would be 49 with a side length of 7.
In order to find this, you can stick 7 into the area equation.
A = s^2
A = 7^2
A = 49
Answer:
exponential function
Step-by-step explanation:
geometric sequence
An = A1 * r^(n-1)
common ratio is 2
A1 = 1st term
nagwa
mthway
<span>
6 Find an exact value. sin 75°
</span>sin(A+B)=sin(A)cos(B)+cos(A)sin<span>(B)
</span>sin(45)=cos(45)=(2^0.5)/2 sin(30)=0.5 cos(30)=(3^0.5)/2
sin(45+30)=sin(45)cos(30)+cos(45)sin(30)=(6^0.5+2^0.5)/4
the answer is the letter d) quantity square root of six plus square root of two divided by four.
<span>
7. Find an exact value. sine of negative eleven pi divided by twelve.
</span>sin(-11pi/12) = -sin(11pi/12) = -sin(pi - pi/12) = -sin(pi/12) = -sin( (pi/6) / 2)
= - sqrt( (1-cos(pi/6) ) / 2) = -sqrt( (1-√3/2) / 2 ) = -(√3-1) / 2√2=(√2-√6)/4
the answer is the letter c) quantity square root of two minus square root of six divided by four.
<span>
8. Write the expression as the sine, cosine, or tangent of an angle. sin 9x cos x - cos 9x sin x
</span>
sin(A−B)=sinAcosB−cosAsinB
sin(9x−x)= sin9xcosx−cos9xsinx= sin(8x)
the answer is the letter c) sin 8x
<span>
9. Write the expression as the sine, cosine, or tangent of an angle. cos 112° cos 45° + sin 112° sin 45°</span>
cos(A−B)=cosAcosB<span>+sinA</span>sinB
cos(112−45)=cos112cos45<span>+sin112</span>sin45=cos(67)
the answer is the letter d) cos 67°
10. Rewrite with only sin x and cos x.
sin 2x - cos 2x
sin2x =
2sinxcosx<span>
cos2x = (cosx)^2 - (sinx)^2 = 2(cosx)^2 -1 = 1- 2(sinx)^2</span>
sin2x- cos2x=2sinxcosx-(1- 2(sinx)^2=2sinxcosx-1+2(sinx)^2
sin2x- cos2x=2sinxcosx-1+2(sinx)^2
<span>
the answer is the letter <span>
b) 2 sin x cos2x - 1
+ 2 sin2x</span></span>
Answer:
x = -2 + 2 i or x = -2 - 2 i
Step-by-step explanation:
Solve for x:
x^2 + 4 x + 8 = 0
Subtract 8 from both sides:
x^2 + 4 x = -8
Add 4 to both sides:
x^2 + 4 x + 4 = -4
Write the left hand side as a square:
(x + 2)^2 = -4
Take the square root of both sides:
x + 2 = 2 i or x + 2 = -2 i
Subtract 2 from both sides:
x = -2 + 2 i or x + 2 = -2 i
Subtract 2 from both sides:
Answer: x = -2 + 2 i or x = -2 - 2 i
Hello from MrBillDoesMath!
Answer:
Choice D, x-2
Discussion:
Observe the the highest order term in the numerator is x^4 and the highest order term in the denominator is x^3. So the highest order term in their quotient is x^4/x^3 = x. Choice D is the only possible answer as all other choices start with x^2
Regards,
MrB