1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katarina [22]
1 year ago
15

Less than, greater than, or equal to​

Mathematics
1 answer:
liq [111]1 year ago
4 0

Answer:

equal to

Step-by-step explanation:

when two negatives are multiplied they cancel out leaving the positive 5. This means they are equal. 5=5

You might be interested in
Xy''+2y'-xy by frobenius method
aalyn [17]
First note that x=0 is a regular singular point; in particular x=0 is a pole of order 1 for \dfrac2x.

We seek a solution of the form

y=\displaystyle\sum_{n\ge0}a_nx^{n+r}

where r is to be determined. Differentiating, we have

y'=\displaystyle\sum_{n\ge0}(n+r)a_nx^{n+r-1}
y''=\displaystyle\sum_{n\ge0}(n+r)(n+r-1)a_nx^{n+r-2}

and substituting into the ODE gives

\displaystyle x\sum_{n\ge0}(n+r)(n+r-1)a_nx^{n+r-2}+2\sum_{n\ge0}(n+r)a_nx^{n+r-1}-x\sum_{n\ge0}a_nx^{n+r}=0
\displaystyle \sum_{n\ge0}(n+r)(n+r-1)a_nx^{n+r-1}+2\sum_{n\ge0}(n+r)a_nx^{n+r-1}-\sum_{n\ge0}a_nx^{n+r+1}=0
\displaystyle \sum_{n\ge0}(n+r)(n+r+1)a_nx^{n+r-1}-\sum_{n\ge0}a_nx^{n+r+1}=0
\displaystyle r(r+1)a_0x^{r-1}+(r+1)(r+2)a_1x^r+\sum_{n\ge2}(n+r)(n+r+1)a_nx^{n+r-1}-\sum_{n\ge0}a_nx^{n+r+1}=0
\displaystyle r(r+1)a_0x^{r-1}+(r+1)(r+2)a_1x^r+\sum_{n\ge2}(n+r)(n+r+1)a_nx^{n+r-1}-\sum_{n\ge2}a_{n-2}x^{n+r-1}=0
\displaystyle r(r+1)a_0x^{r-1}+(r+1)(r+2)a_1x^r+\sum_{n\ge2}\bigg((n+r)(n+r+1)a_n-a_{n-2}\bigg)x^{n+r-1}=0

The indicial polynomial, r(r+1), has roots at r=0 and r=-1. Because these roots are separated by an integer, we have to be a bit more careful, but we'll get back to this later.

When r=0, we have the recurrence

a_n=\dfrac{a_{n-2}}{(n+1)(n)}

valid for n\ge2. When n=2k, with k\in\{0,1,2,3,\ldots\}, we find

a_0=a_0
a_2=\dfrac{a_0}{3\cdot2}=\dfrac{a_0}{3!}
a_4=\dfrac{a_2}{5\cdot4}=\dfrac{a_0}{5!}
a_6=\dfrac{a_4}{7\cdot6}=\dfrac{a_0}{7!}

and so on, with a general pattern of

a_{n=2k}=\dfrac{a_0}{(2k+1)!}

Similarly, when n=2k+1 for k\in\{0,1,2,3,\ldots\}, we find

a_1=a_1
a_3=\dfrac{a_1}{4\cdot3}=\dfrac{2a_1}{4!}
a_5=\dfrac{a_3}{6\cdot5}=\dfrac{2a_1}{6!}
a_7=\dfrac{a_5}{8\cdot7}=\dfrac{2a_1}{8!}

and so on, with the general pattern

a_{n=2k+1}=\dfrac{2a_1}{(2k+2)!}

So the first indicial root admits the solution

y=\displaystyle a_0\sum_{k\ge0}\frac{x^{2k}}{(2k+1)!}+a_1\sum_{k\ge0}\frac{x^{2k+1}}{(2k+2)!}
y=\displaystyle \frac{a_0}x\sum_{k\ge0}\frac{x^{2k+1}}{(2k+1)!}+\frac{a_1}x\sum_{k\ge0}\frac{x^{2k+2}}{(2k+2)!}
y=\displaystyle \frac{a_0}x\sum_{k\ge0}\frac{x^{2k+1}}{(2k+1)!}+\frac{a_1}x\sum_{k\ge0}\frac{x^{2k+2}}{(2k+2)!}

which you can recognize as the power series for \dfrac{\sinh x}x and \dfrac{\cosh x}x.

To be more precise, the second series actually converges to \dfrac{\cosh x-1}x, which doesn't satisfy the ODE. However, remember that the indicial equation had two roots that differed by a constant. When r=-1, we may seek a second solution of the form

y=cy_1\ln x+x^{-1}\displaystyle\sum_{n\ge0}b_nx^n

where y_1=\dfrac{\sinh x+\cosh x-1}x. Substituting this into the ODE, you'll find that c=0, and so we're left with

y=x^{-1}\displaystyle\sum_{n\ge0}b_nx^n
y=\dfrac{b_0}x+b_1+b_2x+b_3x^2+\cdots

Expanding y_1, you'll see that all the terms x^n with n\ge0 in the expansion of this new solutions are already accounted for, so this new solution really only adds one fundamental solution of the form y_2=\dfrac1x. Adding this to y_1, we end up with just \dfrac{\sinh x+\cosh x}x.

This means the general solution for the ODE is

y=C_1\dfrac{\sinh x}x+C_2\dfrac{\cosh x}x
3 0
3 years ago
I need the answer to the problem
Leya [2.2K]
Only a guess but 69.5 7
                                   9

3 0
3 years ago
Read 2 more answers
Write the fraction 9/50 as a decimal if needed round to the nearest hundredth
Marysya12 [62]
0.18 I didn't round it tho lol
8 0
3 years ago
Read 2 more answers
Find x in the figure.<br><br><br> A) x = 44<br><br> B) x = 16<br><br> C) x = 22<br><br> D) x = 66
MakcuM [25]

Answer:

<h2>C)  x = 22</h2><h2 />

Step-by-step explanation:

3x + 3x + 48 = 180

6x = 180 - 48

x = 132 / 6

x = 22

7 0
2 years ago
Read 2 more answers
Braydon is performing the four arithmetic operations on 14 and 2.
Luda [366]
The answer is 14 divided by 2
4 0
3 years ago
Other questions:
  • Given sin(theta)=3/5, find a, the other angle in the right triangle.
    15·2 answers
  • The equation is x^2+(y+5)^2=81. find the center and radius
    7·1 answer
  • Plz help one number 9 plz, merci
    7·1 answer
  • What is the solution for the following equation? 3(a-7)=14-4a​
    7·1 answer
  • A student mixes chemicals a and b together and records the amount of time it takes for a color change to occur. the student repe
    9·2 answers
  • I need help with this <br>​
    9·1 answer
  • The table shows ticket prices for the local minor league baseball team for fan club members &amp; non-members. For how many tick
    11·2 answers
  • The company has only two division division eight and division be last year division a made 60% of the companies total revenue an
    6·1 answer
  • The scale factor from rectangle you UVWX two rectangle STQR is
    13·1 answer
  • After several weeks of working at the grocery store, Mark has been able to put $790 into his savings account. After he withdrawa
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!