1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
2 years ago
6

20%20%5Cdisplaystyle%20%5Crm%20%5Csum_%7B%20%20n_%7B2%7D%20%3D%201%7D%5E%20%5Cinfty%20%20%20%5Cdots%20%5Cdisplaystyle%20%5Crm%20%5Csum_%7B%20%20n_%7B2022%7D%20%3D%201%7D%5E%20%5Cinfty%20%20%20%5Cfrac%7B1%7D%7Bn_%7B1%7D%20n_2%20%5Cdots%20n_%7B2022%7D%28n_%7B1%7D%20%2B%20n_2%20%20%2B%20%5Cdots%20%2B%20%20n_%7B2022%7D%29%7D%20" id="TexFormula1" title=" \displaystyle \rm \sum_{ n_{ 1} = 1}^ \infty \displaystyle \rm \sum_{ n_{2} = 1}^ \infty \dots \displaystyle \rm \sum_{ n_{2022} = 1}^ \infty \frac{1}{n_{1} n_2 \dots n_{2022}(n_{1} + n_2 + \dots + n_{2022})} " alt=" \displaystyle \rm \sum_{ n_{ 1} = 1}^ \infty \displaystyle \rm \sum_{ n_{2} = 1}^ \infty \dots \displaystyle \rm \sum_{ n_{2022} = 1}^ \infty \frac{1}{n_{1} n_2 \dots n_{2022}(n_{1} + n_2 + \dots + n_{2022})} " align="absmiddle" class="latex-formula">​
Mathematics
1 answer:
Kay [80]2 years ago
8 0

As a simpler example, consider the iterated sum with only 2 indices,

\displaystyle \sum_{n_1=1}^\infty \sum_{n_2=1}^\infty \frac1{n_1n_2(n_1+n_2)}

(The case with just one index is pretty simple, as it reduces to ζ(2) = π²/6.)

Let

\displaystyle f(x) = \sum_{n_1=1}^\infty \sum_{n_2=1}^\infty \frac{x^{n_1+n_2}}{n_1n_2(n_1+n_2)}

Differentiating and multiplying by x, we get

\displaystyle x f'(x) = \sum_{n_1=1}^\infty \sum_{n_2=1}^\infty \frac{x^{n_1+n_2}}{n_1n_2} \\\\ = \left(\sum_{n_1=1}^\infty\frac{x^{n_1}}{n_1}\right) \left(\sum_{n_2=1}^\infty \frac{x^{n_2}}{n_2}\right) \\\\ = (-\ln(1-x))^2 = \ln^2(1-x)

\implies f'(x) = \dfrac{\ln^2(1-x)}x

By the fundamental theorem of calculus (observing that letting x = 0 in the sum makes it vanish), we have

f(x) = \displaystyle \int_0^x \frac{\ln^2(1-t)}t \, dt

If we let x approach 1 from below, f(x) will converge to the double sum and

\displaystyle \sum_{n_1=1}^\infty \sum_{n_2=1}^\infty \frac1{n_1n_2(n_1+n_2)} = \int_0^1 \frac{\ln^2(1-x)}x \, dx

In the integral, substitute x\mapsto1-x, use the power series expansion for 1/(1 - x), and integrate by parts twice.

\displaystyle \int_0^1 \frac{\ln^2(1-x)}x \, dx = \int_0^1 \frac{\ln^2(x)}{1-x} \, dx \\\\ = \sum_{m=0}^\infty \int_0^1 x^m \ln^2(x) \, dx \\\\ = \sum_{m=0}^\infty -\frac2{m+1} \int_0^1 x^m \ln(x) \, dx \\\\ = \sum_{m=0}^\infty \frac2{(m+1)^2} \int_0^1 x^m \, dx \\\\ = 2 \sum_{m=0}^\infty \frac1{(m+1)^3} \\\\ = 2 \sum_{m=1}^\infty \frac1{m^3} = 2\zeta(3)

We can generalize this method to k indices to show that

\displaystyle \sum_{n_1=1}^\infty \sum_{n_2=1}^\infty \cdots \sum_{n_k=1}^\infty \frac1{n_1n_2\cdots n_k(n_1+n_2+\cdots+n_k)} = (-1)^k \int_0^1 \frac{\ln^k(1-x)}x \, dx \\\\ = k!\,\zeta(k+1) = \Gamma(k+1)\zeta(k+1)

Then the sum we want is

\displaystyle \sum_{n_1=1}^\infty \sum_{n_2=1}^\infty \cdots \sum_{n_{2022}=1}^\infty \frac1{n_1n_2\cdots n_{2022}(n_1+n_2+\cdots+n_{2022})} = \boxed{\Gamma(2023)\zeta(2023)}

You might be interested in
The prime factorization of 2020 is 2² × 5¹ × 101¹. How many different whole numbers are factors of 2020?
ioda

Answer:

4

Step-by-step explanation:

1, 2, 4, 5, 10, 20, 101, 202, 404, 505, 1010

7 0
3 years ago
-16 + x = -15<br><br> CAN SOMEONE HELP ME PLEASE
Maksim231197 [3]

Answer: x= 1

Step-by-step explanation: Look at pic down below.

7 0
3 years ago
What is the range plss help
Delvig [45]

Answer:

Range is 1<x because there are arrow pointing away

Step-by-step explanation:

Brainliest? Just need 2 more

7 0
3 years ago
Read 2 more answers
PLEASE HELP
Shtirlitz [24]

Answer:

8.8

Step-by-step explanation:

4 0
3 years ago
42 is what percent of 840
Marta_Voda [28]
42 is 5% of 840.Calculate it like this 42÷840×100,just try other question it will nelp you.
6 0
3 years ago
Other questions:
  • A 250-kVA, three-phase, 480-volt transformer requires 75 gallons of insulating oil to keep it properly cooled. How many liters i
    7·1 answer
  • In how many ways can 2 singers be selected from 4 who came for an audition?
    5·1 answer
  • Based on the given segment lengths, determine whether the segments can form a triangle. 11.5,10.5, 6.1 9.5, 3.5, 4.5 8, 6.7, 1 8
    14·1 answer
  • What is a compatible number for 784 divided by 8?
    10·1 answer
  • Solve the following system of equations . Plot the solution to the system on the provided graph
    7·1 answer
  • I really need help also if you could expalin it that would help alot!<br> ABC=DBC, AB=10 AC=7 DC=?
    15·2 answers
  • Which must be true select three options
    12·1 answer
  • Help i give brainliest
    11·2 answers
  • PLS Help!!!.............
    8·2 answers
  • The temperature during a winter day was less than –3 degrees Fahrenheit. Yuri wants to write an inequality for the temperature d
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!