
- Given - <u>a </u><u>cone</u><u> </u><u>with </u><u>volume</u><u> </u><u>7</u><u>6</u><u>9</u><u>?</u><u>3</u><u> </u><u>ft³</u><u> </u><u>,</u><u> </u><u>having </u><u>a </u><u>height </u><u>of </u><u>1</u><u>5</u><u> </u><u>ft</u>
- To calculate - <u>radius </u><u>of </u><u>the </u><u>cone</u>
We know that ,

<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula</u><u> </u><u>stated </u><u>above </u><u>,</u>

therefore ,
<u>radius </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>
hope helpful ~
Answer:
The volume of the solid is 243
Step-by-step explanation:
From the information given:
BY applying sphere coordinates:
0 ≤ x² + y² + z² ≤ 81
0 ≤ ρ² ≤ 81
0 ≤ ρ ≤ 9
The intersection that takes place in the sphere and the cone is:



Thus; the region bounded is: 0 ≤ θ ≤ 2π
This implies that:

ρcosФ = ρsinФ
tanФ = 1
Ф = π/4
Similarly; in the X-Y plane;
z = 0
ρcosФ = 0
cosФ = 0
Ф = π/2
So here; 
Thus, volume: 

![V = \bigg [-cos \phi \bigg]^{\pi/2}_{\pi/4} \bigg [\theta \bigg]^{2 \pi}_{0} \bigg [\dfrac{\rho^3}{3} \bigg ]^{9}_{0}](https://tex.z-dn.net/?f=V%20%3D%20%5Cbigg%20%5B-cos%20%5Cphi%20%20%5Cbigg%5D%5E%7B%5Cpi%2F2%7D_%7B%5Cpi%2F4%7D%20%20%5Cbigg%20%5B%5Ctheta%20%20%5Cbigg%5D%5E%7B2%20%5Cpi%7D_%7B0%7D%20%5Cbigg%20%5B%5Cdfrac%7B%5Crho%5E3%7D%7B3%7D%20%20%5Cbigg%20%5D%5E%7B9%7D_%7B0%7D)
![V = [ -0+ \dfrac{1}{\sqrt{2}}][2 \pi -0] [\dfrac{9^3}{3}- 0 ]](https://tex.z-dn.net/?f=V%20%3D%20%5B%20-0%2B%20%5Cdfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5D%5B2%20%5Cpi%20-0%5D%20%5B%5Cdfrac%7B9%5E3%7D%7B3%7D-%200%20%5D)
V = 243
Answer:

Step-by-step explanation:
We are given that a function

We have to find the average value of function on the given interval [1,e]
Average value of function on interval [a,b] is given by

Using the formula

By Parts integration formula

u=ln x and v=dx
Apply by parts integration
![f_{avg}=\frac{1}{e-1}([xlnx]^{e}_{1}-\int_{1}^{e}(\frac{1}{x}\times xdx))](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28%5Bxlnx%5D%5E%7Be%7D_%7B1%7D-%5Cint_%7B1%7D%5E%7Be%7D%28%5Cfrac%7B1%7D%7Bx%7D%5Ctimes%20xdx%29%29)
![f_{avg}=\frac{1}{e-1}(elne-ln1-[x]^{e}_{1})](https://tex.z-dn.net/?f=f_%7Bavg%7D%3D%5Cfrac%7B1%7D%7Be-1%7D%28elne-ln1-%5Bx%5D%5E%7Be%7D_%7B1%7D%29)

By using property lne=1,ln 1=0

4 cups in a at
12 cups = 3qt
3qt =12 cups
So they are equal