To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.
PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation

Where,
G = Gravitational Universal Constant
d = Distance
M = Mass
Radius earth center of mass
PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,



PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is

At the same time we have that centripetal acceleration is given as

Replacing



Symbolic representations are mental pictures that have no direct relationship to the actual object you are thinking about. Instead, these mental pictures are connected by themes that are meaningful to you. Anytime you think of words and descriptions for one main concept, you're thinking symbolically. Analogical representations are mental pictures that have a direct relationship to the actual object you are thinking about. Do cows have their ears on the top or side of their heads? Rather than thinking symbolically about a cow and his ears (tiny, smelly, leather), analogical representations of the cow's ears involve thinking of an actual cow in your head.
Answer:
11.78meters
Explanation:
Given data
Mass m = 100kg
Length of cord= 10m
Spring constant k= 35N/m
At the greatest vertical distance, the spring potential energy is equal to the gravitational potential energy
That is
Us=Ug
Us= 1/2kx^2
Ug= mgh
1/2kx^2= mgh
0.5*35*10^2= 100*9.81*h
0.5*35*100=981h
1750=981h
h= 1750/981
h= 1.78
Hence the bungee jumper will reach 1.78+10= 11.78meters below the surface of the bridge
Answer:
Current = dQ/dt
or I = dQ/dt
Where I represents current.
Which is the rate of flow of charge.
Q=4 + 2t + t²
dQ/dt = 2 + 2t --- This is the relation that gives the instantaneous current.
At time t=2sec
dQ/dt = I = 2 + 2t
= 2 + 2(2)
=2 + 4
= 6A.
Answer:
La única manera en que nuestro astronauta sería capaz de empujar la nave espacial en el espacio sin alejarse sería usar algo llamado "unidad de propulsión de astronauta". Supongamos que el astronauta está usando un SPK soviético, el sistema de cohetes mochila más poderoso jamás utilizado en el espacio.
Explanation: