Answer:A
Step-by-step explanation:
You would take 8.50 and divide it by 12.
to get $0.71
Answer:
(a) Probability that a triplet is decoded incorrectly by the receiving computer. = 0.010
(b)
(1 – p) = 0.010
(c)
E(x) = 25000 x 0.010
= 259.2
Explanation has given below.
Step-by-step explanation:
Solution:
(a) Probability that a triplet is decoded.
2 out of three
P = 0.94, n = 3
m= no of correct bits
m bit (3, 0.94)
At p(m≤1) = B (1; 3, 0.94)
= 0.010
(b) Using your answer to part (a),
(1 – p) = 0.010
Error for 1 bit transmission error.
(c) How does your answer to part (a) change if each bit is repeated five times (instead of three?
P( m ≤ 2 )
L = Bit (5, 0.94)
= B (2; 5, 0.94)
= 0.002
(d) Imagine a 25 kilobit message (i.e., one requiring 25,000 bits to send). What is the expected number of errors if there is no bit repetition implemented? If each bit is repeated three times?
Given:
h = 25000
Bits are switched during transmission between two computers = 6% = 0.06
m = Bit (25000, 0.06)
E(m) = np
= 25000 x 0.06
= 1500
m = Bit (25000, 0.01)
E(m) = 25000 x 0.010
= 259.2
Answer:
5 to the power of 5
Step-by-step explanation:
ANSWER

EXPLANATION
The given expression is;

Recall that, in complex numbers

We use this identity to simplify the given expression:

This implies that:


