Answer:
a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve
is
.
Explanation:
a) The work, measured in joules, is a physical variable represented by the following integral:
![W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx](https://tex.z-dn.net/?f=W%20%3D%20%5Cint%5Climits%5E%7Bx_%7Bf%7D%7D_%7Bx_%7Bo%7D%7D%20%7BF%28x%29%7D%20%5C%2C%20dx)
Where
,
- Initial and final position, respectively, measured in meters.
- Force as a function of position, measured in newtons.
Given that
and the fact that
when
, the spring constant (
), measured in newtons per meter, is:
![k = \frac{F}{x}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7BF%7D%7Bx%7D)
![k = \frac{25\,N}{0.3\,m-0.2\,m}](https://tex.z-dn.net/?f=k%20%3D%20%5Cfrac%7B25%5C%2CN%7D%7B0.3%5C%2Cm-0.2%5C%2Cm%7D)
![k = 250\,\frac{N}{m}](https://tex.z-dn.net/?f=k%20%3D%20250%5C%2C%5Cfrac%7BN%7D%7Bm%7D)
Now, the work function is obtained:
![W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx](https://tex.z-dn.net/?f=W%20%3D%20%5Cleft%28250%5C%2C%5Cfrac%7BN%7D%7Bm%7D%20%5Cright%29%5Cint%5Climits%5E%7B0.05%5C%2Cm%7D_%7B0%5C%2Cm%7D%20%7Bx%7D%20%5C%2C%20dx)
![W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}]](https://tex.z-dn.net/?f=W%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%28250%5C%2C%5Cfrac%7BN%7D%7Bm%7D%20%5Cright%29%5Ccdot%20%5B%280.05%5C%2Cm%29%5E%7B2%7D-%280.00%5C%2Cm%29%5E%7B2%7D%5D)
![W = 0.313\,J](https://tex.z-dn.net/?f=W%20%3D%200.313%5C%2CJ)
The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.
b) Let be
. The area of the region enclosed by one loop of the curve is given by the following integral:
![A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta](https://tex.z-dn.net/?f=A%20%3D%20%5Cint%5Climits%5E%7B2%5Cpi%7D_0%20%7B%5Br%28%5Ctheta%29%5D%5E%7B2%7D%7D%20%5C%2C%20d%5Ctheta)
![A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta](https://tex.z-dn.net/?f=A%20%3D%204%5Cint%5Climits%5E%7B2%5Cpi%7D_%7B0%7D%20%7B%5Csin%5E%7B2%7D5%5Ctheta%7D%20%5C%2C%20d%5Ctheta)
By using trigonometrical identities, the integral is further simplified:
![A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta](https://tex.z-dn.net/?f=A%20%3D%204%5Cint%5Climits%5E%7B2%5Cpi%7D_%7B0%7D%20%7B%5Cfrac%7B1-%5Ccos%2010%5Ctheta%7D%7B2%7D%20%7D%20%5C%2C%20d%5Ctheta)
![A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta](https://tex.z-dn.net/?f=A%20%3D%202%20%5Cint%5Climits%5E%7B2%5Cpi%7D_%7B0%7D%20%7B%281-%5Ccos%2010%5Ctheta%29%7D%20%5C%2C%20d%5Ctheta)
![A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta](https://tex.z-dn.net/?f=A%20%3D%202%5Cint%5Climits%5E%7B2%5Cpi%7D_%7B0%7D%5C%2C%20d%5Ctheta%20-%202%5Cint%5Climits%5E%7B2%5Cpi%7D_%7B0%7D%20%7B%5Ccos10%5Ctheta%7D%20%5C%2C%20d%5Ctheta)
![A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)](https://tex.z-dn.net/?f=A%20%3D%202%5Ccdot%20%282%5Cpi%20-%200%29%20-%20%5Cfrac%7B1%7D%7B5%7D%5Ccdot%20%28%5Csin%2020%5Cpi-%5Csin%200%29)
![A = 4\pi](https://tex.z-dn.net/?f=A%20%3D%204%5Cpi)
The area of the region enclosed by one loop of the curve
is
.