The forces are Andrew poking the marble and then gravity pulling the marble downward
Answer:
Gold
Explanation:
Given:
Mass of sample = 63.5 g
Mass of water = 60.2 g
Find:
Object
Computation:
Mass of water displaced = 63.5 g - 60.2 g
Mass of water displaced = 3.3 g
So, volume in water = 3.3 cm³
Density = Mass / Volume
Density = 63.5 g / 3.3
Density = 19.24
So,
Object ,must be gold.
Answer:
a) i = -9.63 cm
, h ’= .0.24075 cm erect
b) i = 259.74 cm
,
Explanation:
For this exercise let's start by finding the focal length of the lens
1 / f = (n-1) (1 / R₁ - 1 / R₂)
1 / f = (1.70 -1)) 1 / ∞ - 1/13)
1 / f = 0.0538
f = - 18.57 cm
Now we can use the constructor equation
1 / f = 1 / o + 1 / i
1 / i = 1 / f - 1 / o
1 / i = -1 / 18.57 -1/20
1 / i = -0.1038 cm
I = -9.63 cm
For the height of the
image let's use magnification
m = h '/ h = - i / o
h ’= -h i / o
h ’= - 0.5 (-9.63) / 20
h ’= .0.24075 cm
b) we invert the lens
The focal length is
1 / f = (1.70 -1) (1/13 - 1 / int)
1 / f = 0.0538
f = 18.57 cm
1 / i = 1 / f -1 / o
1 / I = 1 / 18.57 - 1/20
1 / I = 3.85 10-3
i = 259.74 cm
h ’= - 0.5 259.74 / 20
h ’= 6.4935 cm
Answer:

Given:
Radius of curvature (R) of a spherical mirror = 20
To Find:
Focal length (f)
Explanation:
Formula:

Substituting value of R in the equation:



This is 2 hertz. You can mark out 2 full wavelengths in the second of time.