Answer:
He can return to the spacecraft by sacrificing some of the tools employing the principle of conservation of momentum.
Explanation:
By carefully evaluating his direction back to the ship, the astronaut can throw some of his tools in the opposite direction to that. On throwing those tools of a certain mass, they travel at a certain velocity giving him velocity in the form of recoil in the opposite direction of the velocity of the tools. This is same as a gun and bullet recoil momentum conservation. It is also the principle on which the operational principles of their maneuvering unit is designed.
Subjective questions can be answered most likely through well-designed scientific investigations. Investigating peoples opinions or favorites does not involve any scientific investigations.
<h3>What are scientific investigation?</h3>
Scientific investigations include study on different natural phenomenon through well designed research methodologies. They include a preliminary hypothesis based on observations and various scientific records helps for reference.
Through well designed scientific experiments we can solve subjective questions and can be helpful in solving different environmental or social issues.
Peoples opinion or objective types questions are not targeted at scientific investigation, hence, option b is correct.
To find more on scientific investigations, refer here:
brainly.com/question/8386821
#SPJ1
Answer:
uniform acceleration
Explanation:
The definition for uniform acceleration is:
if an object travels in a straight line and its velocity increases or decreases by equal amounts in equal intervals of time, then the acceleration is said to be uniform.
Hope this helps.
Good Luck
Explanation:
The 11Ω, 22Ω, and 33Ω resistors are in parallel. That combination is in series with the 4Ω and 10Ω resistors.
The net resistance is:
R = 4Ω + 10Ω + 1/(1/11Ω + 1/22Ω + 1/33Ω)
R = 20Ω
Using Ohm's law, we can find the current going through the 4Ω and 10Ω resistors:
V = IR
120 V = I (20Ω)
I = 6 A
So the voltage drops are:
V = (4Ω) (6A) = 24 V
V = (10Ω) (6A) = 60 V
That means the voltage drop across the 11Ω, 22Ω, and 33Ω resistors is:
V = 120 V − 24 V − 60 V
V = 36 V
So the currents are:
I = 36 V / 11 Ω = 3.27 A
I = 36 V / 22 Ω = 1.64 A
I = 36 V / 33 Ω = 1.09 A
If we wanted to, we could also show this using Kirchhoff's laws.