Answer:
space , small amount of gravity is found in the space ,infact we can say that there is no gravity in the space
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,
Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,
Replacing,
(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as
Replacing,
Now the velocity is described as,
We have all the values, then replacing,
We know that:
d=vt
d=32mph*5h
d=160mi
Answer:
Recessed incandescent luminaires not marked type ic and those marked for installing directly in insulated ceilings must not have insulation over the top of the luminaire.
Explanation:
Depending on how they interact with insulation, lighting fixtures are rated at various levels. Non-IC rated lighting fixtures can accommodate higher wattage bulbs, but they also pose the greatest fire risk when used with the incorrect insulation.
In locations with insulation, light fixtures that are not IC rated may be installed. But there is a condition. The distance between the fixture and any insulation should be 3 inches. But the 3 inch gap in the insulation would negate the goal of insulation by producing a lot of uninsulated space, so this defies logic. Building a box-style cover to cover the fixture on the attic side is one option to fix this. Drywall or foil-faced foam insulation can be used to create this box. After the cover is put in place, insulation can be added for maximum effectiveness.
To learn more about recessed incandescent luminaries. Click brainly.com/question/17218799
#SPJ4
5 What is the angular displacement at the end of the 25-mm-diameter shaft and the linear displacement of point A of Figure P5.5
<h3>What is
displacement ?</h3>
A displacement is a vector in geometry and mechanics that has a length equal to the shortest distance between a point P's initial and final positions. It calculates the length and angle of the net motion, or total motion, in a straight line from the starting point to the destination of the point trajectory. The translation that links the starting point and the ending point can be used to spot a displacement.
The final location xf of a point relative to its beginning position xi, or a relative position (derived from the motion), is another way to express a displacement. The difference between the end and beginning positions can be used to define the equivalent displacement vector
To learn more about displacement from the given link:
brainly.com/question/321442
#SPJ4