Answer:
wo = 18.75 rev / s
Explanation:
This is an exercise in endowment kinematics, it indicates that the final angular velocity is w_f = 109 rad / s, the time to reach this velocity is t = 1.87 s and the deceleration a = 4.7 rad / s²
w_f = w₀ - a t
w₀ = w_f + a t
w₀ = 109 + 4.7 1.87
w₀ = 117.8 rad / s
let's reduce to revolutions / s
w₀ = 117.8 rad / s (1 rev / 2pi rad)
w₀ = 18.75 rev / s
Answer:
The windowpanes are- transparent.
The color of the panes are due to the wavelengths of light that the glass- allows to pass through
Explanation:
Just answered the question.
<span>Given:
3,500 kilometers
Find:</span>
Years for two continents to collide = ?
<span>Solution:
We know that </span>typical motions of one plate relative to another
are 1 centimeter per year.
So first, we convert 3,500 km to cm.<span>
</span><span>
</span>
The solution would be like this for this specific problem:
1 km = 100,000 cm
3,500 km x 100,000 = 350,000,000 cm
Since we know that 1 cm = 1 year, then that means
350,000,000 cm is equivalent to 350,000,000 years.
Therefore, it would take 350 million years for two continents
that are 3500 kilometers apart to collide.
<span>
To add, </span>a phenomenon of the plate tectonics of Earth that occurs at
convergent boundaries is called the continental collision.
Refer to the diagram shown below.
The basket is represented by a weightless rigid beam of length 0.78 m.
The x-coordinate is measured from the left end of the basket.
The mass at x=0 is 2*0.55 = 1.1 kg.
The weight acting at x = 0 is W₁ = 1.1*9.8 = 10.78 N
The mass near the right end is 1.8 kg.
Its weight is W₂ = 1.8*9.8 = 17.64 N
The fulcrum is in the middle of the basket, therefore its location is
x = 0.78/2 = 0.39 m.
For equilibrium, the sum of moments about the fulcrum is zero.
Therefore
(10.78 N)*(0.39 m) - (17.64 N)*(x-0.39 m) = 0
4.2042 - 17.64x + 6.8796 = 0
-17.64x = -11.0838
x = 0.6283 m
Answer: 0.63 m from the left end.
Answer:
The magnitude of magnetic field at given point =
×
T
Explanation:
Given :
Current passing through both wires = 5.0 A
Separation between both wires = 8.0 cm
We have to find magnetic field at a point which is 5 cm from any of wires.
From biot savert law,
We know the magnetic field due to long parallel wires.
⇒ 
Where
magnetic field due to long wires,
,
perpendicular distance from wire to given point
From any one wire
5 cm,
3 cm
so we write,
∴ 

![B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]](https://tex.z-dn.net/?f=B%20%3D%5Cfrac%7B%204%5Cpi%20%5Ctimes10%5E%7B-7%7D%20%5Ctimes5%7D%7B2%5Cpi%20%7D%20%5B%5Cfrac%7B1%7D%7B0.03%7D%20%2B%20%5Cfrac%7B1%7D%7B0.05%7D%20%5D)

Therefore, the magnitude of magnetic field at given point = 