At the "very top" of the ball's path, there's a tiny instant when the ball
is changing from "going up" to "going down". At that exact tiny instant,
its vertical speed is zero.
You can't go from "rising" to "falling" without passing through "zero vertical
speed", at least for an instant. It makes sense, and it feels right, but that's
not good enough in real Math. There's a big, serious, important formal law
in Calculus that says it. I think Newton may have been the one to prove it,
and it's named for him.
By the way ... it doesn't matter what the football's launch angle was,
or how hard it was kicked, or what its speed was off the punter's toe,
or how high it went, or what color it is, or who it belongs to, or even
whether it's full to the correct regulation air pressure. Its vertical speed
is still zero at the very top of its path, as it's turning around and starting
to fall.
Answer:
How much time does his victim on the ground below have to move out of harm's way? At what velocity will the safe hit the ground? sownt d-200m. n a = 100/2. Vi-o.
Explanation:
Explanation:
In uniform gravity it is the same as the centre of mass. For regular shaped bodies it lies at the centre of the that particular body. Hence for a cylinder centre of gravity lies at the midpoint of the axis of the cylinder.
The total work done of 0.018 joules is needed to move the charges apart and double the distance between them.
We have two electric charges q(A) = 1μc and q(B) = -2μc kept at a distance 0.5 meter apart.
We have to calculate much work is needed to move the charges apart and double the distance between them.
<h3>What s the formula to calculate the Potential Energy of a system of two charges (say 'q' and 'Q') separated by a distance 'r' ?</h3>
The potential energy of the system of two charges separated by a distance is given by -

In order to solve this question, it is important to remember the work - energy theorem which states -
"The change in the energy of the body is equal to work done on it"
Hence, using this work -energy theorem in the question given to us we get -

In our case -

W = 0.018 joules
Hence, the total work done should be 0.018 joules.
To solve more question on potential energy, visit the link below -
brainly.com/question/15014856
#SPJ4
Complete question:
A solenoid of length 2.40 m and radius 1.70 cm carries a current of 0.190 A. Determine the magnitude of the magnetic field inside if the solenoid consists of 2100 turns of wire.
Answer:
The magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻⁴ T.
Explanation:
Given;
length of solenoid, L = 2.4 m
radius of solenoid, R = 1.7 cm = 0.017 m
current in the solenoid, I = 0.19 A
number of turns of the solenoid, N = 2100 turns
The magnitude of the magnetic field inside the solenoid is given by;
B = μnI
Where;
μ is permeability of free space = 4π x 10⁻⁷ m/A
n is number of turns per length = N/L
I is current in the solenoid
B = μnI = μ(N/L)I
B = 4π x 10⁻⁷(2100 / 2.4)0.19
B = 4π x 10⁻⁷ (875) 0.19
B = 2.089 x 10⁻⁴ T
Therefore, the magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻⁴ T.