a. The force applied would be equal to the frictional
force.
F = us Fn
where, F = applied force = 35 N, us = coeff of static
friction, Fn = normal force = weight
35 N = us * (6 kg * 9.81 m/s^2)
us = 0.595
b. The force applied would now be the sum of the
frictional force and force due to acceleration
F = uk Fn + m a
where, uk = coeff of kinetic friction
35 N = uk * (6 kg * 9.81 m/s^2) + (6kg * 0.60 m/s^2)
uk = 0.533
The unstable nuclei undergo radioactive decay. The nucleus decay in form of emitting the radiations or changing into the different chemical element.
Thus, the nucleus decay takes place till the nuclei become stable.
Hence, given statement is false.
Draw a velocity-time diagram as shown below.
Because a velocity of 26.82 m/s is attained in 4.00 s from rest, the average acceleration is
a = 26.82/4 = 6.705 m/s²
The time required to reach maximum velocity of 82.1 m/s is
t₁ = (82.1 m/s)/(6.705 m/s²) = 12.2446 s
The distance traveled during the acceleration phase is
s₁ = (1/2)at₁²
= (1/2)*(6.705 m/s²)*(12.2446 s)²
= 502.64 m
Answer:
The time required to reach maximum speed is 12.245 s
The distance traveled during the acceleration phase is 502.6 m
ANSWER: 9.4ms a second
EXPLANATION
100/10.6 = 9.4
Brainiest please?
(Hope this helps you. Have a good day.)
Answer:
Heat capacity, Q = 2090 Joules.
Explanation:
Given the following data;
Mass = 100 grams
Specific heat capacity = 4.18 J/g°C.
Temperature = 5°C
To find the quantity of heat required;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
t represents the temperature of an object.
Substituting into the formula, we have;
Heat capacity, Q = 2090 Joules.