Answer:
i speak english not spanigh sorry :(
Explanation:
Answer: -31.36 m/s
Explanation:
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told it was "dropped", this means it goes to ground in free fall)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Finally:
Note the negative sign is because the direction of the bag is downwards as well.
Because the gravitational force, which points downward, is perfectly balanced by the normal reaction of the floor of the bowling lane, which points upward. The two forces are equal in magnitude, so the net force acting vertically on the bowling ball is zero, therefore there is no acceleration along this direction. Moreover, since the ball is moving in the horizontal direction, the gravitational force has no component along this direction, so it does not change the velocity of the ball.
Answer: The free - body diagrams for blocks A and B. frictionless surface by a constant horizontal force F = 100 N. Find the tension in the cord between the 5 kg and 10 kg blocks. The string that attaches it to the block of mass M2 passes over a frictionless pulley of negligible mass. The coefficient of kinetic friction Hk between M.
Explanation: Hope this helped :)
Answer:
(a) 1 : 2
(b) same
Explanation:
Let the mass of puck A is m and the mass of puck B is 2 m.
initial speed for both the pucks is same as u and the distance is same for both is s.
let the tension is T for same.
The kinetic energy is given by

(a) As the speed is same, so the kinetic energy depends on the mass.
So, kinetic energy of A : Kinetic energy of B = m : 2m = 1 : 2
(b) A the distance s same so the final velocities are also same.