Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51
Answer:
A concave mirror is used as a torch reflector. ... When a light bulb is placed at the focus of a concave mirror reflector, the diverging light rays of the bulb are collected by the reflector. These rays are then reflected to produce a strong, parallel-sided beam of light.
Explanation:
Answer:
-54.12 V
Explanation:
The work done by this force is equal to the difference between the final value and the initial value of the energy. Since the charge starts from the rest its initial kinetic energy is zero.

The change in electrostatic potential energy
, of one point charge q is defined as the product of the charge and the potential difference.

Answer:
Reflected ray. A ray of light or other form of radiant energy which is thrown back from a nonpermeable or nonabsorbing surface; the ray which strikes the surface before reflection is the incident ray.
The first step of the scientific method is to MAKE OBSERVATIONS