Answer:
I believe its C: Secretary of War. I hope this helped :)
Explanation:
Answer:
I = 0.287 MR²
Explanation:
given,
height of the object = 3.5 m
initial velocity = 0 m/s
final velocity = 7.3 m/s
moment of inertia = ?
Using total conservation of mechanical energy
change in potential energy will be equal to change in KE (rotational) and KE(transnational)
PE = KE(transnational) + KE (rotational)

v = r ω




I = 0.287 MR²
Answer:
They will not meet
h-hX=1.2*g*t²
hX=v0*t-(1/2*g*t²)
Explanation:
fall h=1/2*g*t²
elevation time if v0=20 m/s te=v0/g=20 m/s /9.81 m/s²=2.0387s
hmax=v0²/(2*g)=(400 m²/s²)/19.62 m/s²2=20.387 m
free fall
t=2.0387s yields hX=1/2*g*t²=20.387 m
h-hX=200m - 20.387 m=179,613 m.
so, the second body has not enough initianoal speed to reach a meeting point