Answer:
Yes
Explanation:
There is a position that works better than this and that is switching the sides of the forks.
Gravitational force = G ( m1 m2 ) / r²
3 = G ( m1 m2 ) / ( 10 )²x = G ( m1 m2 ) / ( 5 )²We shall divide those two equations:3 / x = 1/100 / 1/25 = 25 / 100 = 1 / 4x · 1 = 3 · 4x = 12Answer:C. 12 N
Answer:
v = 2 v₁ v₂ / (v₁ + v₂)
Explanation:
The body travels the first half of the distance with velocity v₁. The time it takes is:
t₁ = (d/2) / v₁
t₁ = d / (2v₁)
Similarly, the body travels the second half with velocity v₂, so the time is:
t₂ = (d/2) / v₂
t₂ = d / (2v₂)
The average velocity is the total displacement over total time:
v = d / t
v = d / (t₁ + t₂)
v = d / (d / (2v₁) + d / (2v₂))
v = d / (d/2 (1/v₁ + 1/v₂))
v = 2 / (1/v₁ + 1/v₂)
v = 2 / ((v₁ + v₂) / (v₁ v₂))
v = 2 v₁ v₂ / (v₁ + v₂)
Answer:
<em> 508Hz</em>
Explanation:
A tuning fork with a frequency of 512 Hz is used to tune a violin. When played together, beats are heard with a frequency of 4 Hz. The string on the violin is tightened and when played again, the beats have a frequency of 2 Hz. The original frequency of the violin was ______.
When two sound waves of different frequency approach your ear, the alternating constructive and destructive interference causes the sound to be alternatively soft and loud - this phenomenon is beat production
frequency is the number of oscillation a wave makes in one seconds.
f1-f2=beats
therefore f1=512Hz
f2=?
beats=4Hz
512Hz-f2=4Hz
f2=512-4
f2=508Hz
the original frequency of the violin is 508Hz
Entropy measures disorder and nothing else