To solve this, let's assume ideal gas behavior.
PV=nRT
Let's solve for n. Convert units to SI units first.
Pressure = 833 torr(101325 Pa/760 torr) = 111,057.53 Pa
Volume = 250 mL(1 L/1000 mL)(1 m³/1000 L) = 2.5×10⁻⁴ m³
Temperature = 42.4 + 273 = 315.4 K
n = (8,314 J/mol·K)(315.4 K)/(111057.53 Pa)(2.5×10⁻⁴ m³)
n = 94.45 mol
The molar mass of ammonia is 17.031 g/mol.
Mass = 94.45*17.031 = <em>1,608.51 g ammonia</em>
Answer:
It is soft and white. It has a low melting and boiling point, a good conductor electricity, and reacts with water. Furthermore, it is also highly reactive, malleable, and ductile.
Explanation:
Hope I helped!
Answer:
The mechanism is E1 and the product is cyclohexene
Explanation:
Attached to this answer is an image of the reaction mechanism of the reaction between cyclohexanol and concentrated sulfuric acid/phosphoric acid. The acid (H3O^+) acts as catalyst.
We can see that the first step in the mechanism is the protonation of the -OH group of the alcohol. This is followed by loss of water molecule which is a good leaving group.
The water now acts as a Lewis base by abstracting a proton from the substrate, forming cyclohexene and regenerating the acid catalyst.
Mass of H_2SO_4 required
Molarity
- Moles of solute/Volume of solution in L
So
- 0.1=n/0.1L
- n=0.1(0.1)
- n=0.01mol
Now molar mass of H_2SO_4
- 2(1)+32+4(16)
- 2+32+64
- 98g/mol
Mass