You can obtain the a number for which they all divisors by calculating the least common multiple.
This way:
85 = 5*17*1
17=17*1
19=19*1
4=2^2 *1
2=2*1
The least common multiple is: 5*17*19*2^2 = 6,460.
Then 84, 17, 19, 4 and 2 are all divisors of 6,460.
Answer:
392939939393939399393939393
Step-by-step explanation:
Answer:
yes 6 (7) + 2 (3²) = 60
Step-by-step explanation:
60 = 60
1. Adding all the responses together, we get the total number of responses is 24. The number of people who chose a genre that wasn't mystery was 7 for science fiction, 6 for history, and 3 for biographies. This means we will have 3 fractions before reducing. 7/24, 6/24, and 3/24. 7/24 is in simplest form, but 6/24 and 3/24 can be reduced. 6/24 can be 3/12 and 1/4. 3/24 can be 1/8. The answer will be to circle 7/24, 6/24, 3/12, 1/4, 3/24, or 1/8.
2. Plot the points given, and mirror them for point B and C to form the figure. When connecting them, the resulting figure should look extremely similar to the picture given.
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given set of values

STEP 2: Write the formula for calculating the Standard deviation of a set of numbers
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ where\text{ }x_i\text{ are data points,} \\ \bar{x}\text{ is the mean} \\ \text{n is the number of values in the data set} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20where%5Ctext%7B%20%7Dx_i%5Ctext%7B%20are%20data%20points%2C%7D%20%5C%5C%20%5Cbar%7Bx%7D%5Ctext%7B%20is%20the%20mean%7D%20%5C%5C%20%5Ctext%7Bn%20is%20the%20number%20of%20values%20in%20the%20data%20set%7D%20%5Cend%7Bgathered%7D)
STEP 3: Calculate the mean

STEP 4: Calculate the Standard deviation
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ \sum ^{}_{}(x_i-\bar{x})^2\Rightarrow\text{Sum of squares of differences} \\ \Rightarrow10332.7225+657.9225+18591.3225+982.8225+2740.52251+9731.8225+3522.4225+18319.6225+2878.3225 \\ +8163.1225+1417.5225+3925.0225+1321.3225+386.1225+5677.6225+2953.9225+3800.7225 \\ +3209.2225+2565.4225+10537.0225 \\ \text{Sum}\Rightarrow108974.0275 \\ \\ S\tan dard\text{ deviation}=\sqrt[]{\frac{111714.55}{20-1}}=\sqrt[]{\frac{111714.55}{19}} \\ \Rightarrow\sqrt[]{5879.713158}=76.67928767 \\ \\ S\tan dard\text{ deviation}\approx76.68 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20%5Csum%20%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%5CRightarrow%5Ctext%7BSum%20of%20squares%20of%20differences%7D%20%5C%5C%20%5CRightarrow10332.7225%2B657.9225%2B18591.3225%2B982.8225%2B2740.52251%2B9731.8225%2B3522.4225%2B18319.6225%2B2878.3225%20%5C%5C%20%2B8163.1225%2B1417.5225%2B3925.0225%2B1321.3225%2B386.1225%2B5677.6225%2B2953.9225%2B3800.7225%20%5C%5C%20%2B3209.2225%2B2565.4225%2B10537.0225%20%5C%5C%20%5Ctext%7BSum%7D%5CRightarrow108974.0275%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B20-1%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B19%7D%7D%20%5C%5C%20%5CRightarrow%5Csqrt%5B%5D%7B5879.713158%7D%3D76.67928767%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%5Capprox76.68%20%5Cend%7Bgathered%7D)
Hence, the standard deviation of the given set of numbers is approximately 76.68 to 2 decimal places.
STEP 5: Calculate the First and third quartile

STEP 6: Find the Interquartile Range

Hence, the interquartile range of the data is 116