The number of protons in the element.
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,
- Charge on the second charged particle,
- Position of the first charge =
- Position of the second charge =
The electric field at a point due to a charge at a point distance away is given by
where,
- = Coulomb's constant, having value
- = position vector of the point where the electric field is to be found with respect to the position of the charge .
- = unit vector along .
The electric field at the origin due to first charge is given by
is the position vector of the origin with respect to the position of the first charge.
Assuming, are the units vectors along x and y axes respectively.
Using these values,
The electric field at the origin due to the second charge is given by
is the position vector of the origin with respect to the position of the second charge.
Using these values,
The net electric field at the origin due to both the charges is given by
Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
so the monster passige may be confusing so just do auto books
Einstein's theory of General Relativity states that space-time is able to be warped in the presence of mass or energy. This warping is what "tells" matter how to move in its presence. In the paraphrased words of physicist John Wheeler, matter tells space-time how to warp, and warped space-time tells matter how to move.