For an object to be in equilibrium, it must be experiencing no acceleration. This means that both the net force and the net torque on the object must be zero.
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Average velocity is 1..2 mi/min east
Explanation:
- Velocity = Displacement/Time
Here, displacement = 48 mi - 42 mi = 6 miles
Time = 5 minutes
⇒ Average Velocity = 6/5 = 1.2 mi/min east
Light waves are reflected from front and back surfaces of the thin films and constructive interference between the two reflected waves occurs in different places for different wavelengths. Light shining on the upper surface of the thin film with thickness t is partly reflected at the upper surface (path abc). Light transmitted from the upper surface is partly reflected at the lower surface (path abdef). The two reflected waves come together at point P on the retina of the eye. Depending on the phase relationship, they may interfere constructively or destructively. Different colors have different wavelengths, so the interference may be constructive for some colors and destructive for others.
I'm not sure about the rest but for question 2:
A theory is an attempt to come up with a big picture of all we know so far. It also drives future research as people do experiments to see if what the theory predicts actually happens. When experiments don’t support the theory, you have to change the theory and try again. That’s how science works. We come up with a “best guess” (theory), and then do research to test it’s accuracy. As we discover contradictions, we adjust the theory to take those into account, and then start testing the validity of the new theory.