The speed of the second mass after it has moved ℎ=2.47 meters will be 1.09 m/s approximately
<h3>
What are we to consider in equilibrium ?</h3>
Whenever the friction in the pulley is negligible, the two blocks will accelerate at the same magnitude. Also, the tension at both sides will be the same.
Given that a large mass m1=5.75 kg and is attached to a smaller mass m2=3.53 kg by a string and the mass of the pulley and string are negligible compared to the other two masses. Mass 1 is started with an initial downward speed of 2.13 m/s.
The acceleration at which they will both move will be;
a = (
-
) / (
+
)
a = (5.75 - 3.53) / (5.75 + 3.53)
a = 2.22 / 9.28
a = 0.24 m/s²
Let us assume that the second mass starts from rest, and the distance covered is the h = 2.47 m
We can use third equation of motion to calculate the speed of mass 2 after it has moved ℎ=2.47 meters.
v² = u² + 2as
since u =0
v² = 2 × 0.24 × 2.47
v² = 1.1856
v = √1.19
v = 1.0888 m/s
Therefore, the speed of mass 2 after it has moved ℎ=2.47 meters will be 1.09 m/s approximately
Learn more about Equilibrium here: brainly.com/question/517289
#SPJ1
The answer is <span>B. the amount of hot soup contained in a bowl. Buoyancy is defined as the upward force exerted by a fluid on an object immersed in that fluid. Buoyancy and density are two factors that affect the downward and upward forces exerted on object that affect its ability to "float" or "sink". Only B does not have anything to do with such forces.</span>
Answer:
A. Isotopes
Explanation:
The answer is isotopes. Isotopes are different kind of atoms of the same element.
I think its most likely a the direction of the impact