Answer:
b.only when the current in the first coil changes.
Explanation:
An induced current flow in the second coil only when there is a change in current in the first cool. A steady current will produce no change in flux (due to magnetic effect of a current) by the first coil, and according to Faraday, induced current is only produced when there is a change in flux linkage.
It is a stretch of the atmosphere ranging from the upper mesosphere to the lower parts of the thermosphere. It’s useful to us in radio communication.
The answer is: " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V ; That is, "mass divided by volume" ;
Density is expressed as:
__________________________________________
"mass per unit volume"; in which the "mass" is expressed in units of "g" ("grams") ; and the "unit volume" is expressed in units of:
"cm³ " or "mL";
_____________________________________________
{Note the exact equivalent: 1 cm³ = 1 mL }.
____________________________________________
→ The formula is: " D = m / V " ;
___________________________________________
in which:
"D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given);
"m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
"V" refers to the "volume", in units of "cm³ " ;
which is: "23.4 cm³ " (given);
_________________________________________________
We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________
D = m / V ;
_________________________________________________________
And we rearrange; to isolate "m" (mass) on ONE side of the equation; and then we plug in our known/given values;
to solve for "m" (mass); in units of "g" (grams) ;
___________________________________________________
Multiply each side of the equation by "V" ;
____________________________________________________
V * { D = m / V } ; to get:
____________________________________________________
V * D = m ; ↔ m = V * D ;
___________________________________________________
Now, we plug in the given values for "V" (volume) and "D" (density) ; to solve for the mass, "m" ;
______________________________________________________
m = V * D ;
m = (23.4 cm³) * (8.9 g / 1 cm³) = (23.4 * 8.9) g = 208.26 g ;
→ Round to "208 g" (3 significant figures);
____________________________________
The answer is: " 208 g " .
_____________________________________________________
1.8 is the mechanical advantage of the lever.
<h3>Definition of mechanical advantage</h3>
The theoretical mechanical advantage of a system is the ratio of the force that performs the useful work to the force applied, assuming there is no friction in the system.
The advantage gained by the use of a mechanism in transmitting force specifically the ratio of the force that performs the useful work of a machine to the force that is applied to the machine.
Mechanical advantage is given by the ratio of the load lifted to the force applied to lift the load.
In this case, Mechanical advantage=L/E where L is the load and E is the effort applied.
Mechanical advantage= 90/50 =1.8
Question-you use a lever to lift a heavy tree branch. you apply a force of 50 n and the lever lifts the branch with a force of 90 n. what is the mechanical advantage of the lever?
To learn more about the Mechanical advantage visit the link
brainly.com/question/16617083
#SPJ4
Answer:
The answer would be 420 m/s
Explanation:
Look in attachment ⬇
I Hope this Helps!!!