Answer:
(a)158.9 N up the ski slope
(b) 0.19
Explanation:
PLEASE MARK ME AS BRAINLIEST
F^k=MkN
158.9=817.7 M*s
Mk=0.19
The electrons stop flowing
<h3><u>Answer</u>;</h3>
B. When actin filaments are pulled toward the center of the sarcomere, the fiber shortens.
<h3><u>Explanation;</u></h3>
- <em><u>The events of muscle fiber shortening occurs with in the sacromeres in the fibers. </u></em>
- <em><u>Contraction of striated muscle fibers takes place as the sacromeres shorten as myosin heads pull on the actin filaments.</u></em>
- <em><u>Filament movement starts at the region or zone where thin and thick filaments overlap. </u></em>
- <em><u>Myofibril contains many sacromeres along its length and thuse myofibrils and muscle cells contract as the sacromeres contract.</u></em>
From conservation of momentum, the ram force can be calculated similarly to rocket thrust:
F = d(mv)/dt = vdm/dt.
<span>In other words, the force needed to decelerate the wind equals the force that would be needed to produce it.
</span><span> v = 120/3.6 = 33.33 m/s
</span><span> dm/dt = v*area*density
</span> dm/dt = (33.33)*((45)*(75))*(1.3)
dm/dt = <span>
146235.375 </span><span>kg/s
</span><span> F = v^2*area*density
</span> F = (33.33)^2*((45)*(75))*(1.3) = <span>
<span>4874025 </span></span><span>N
</span> This differs by a factor of 2 from Bernoulli's equation, which relates velocity and pressure difference in reference not to a head-on collision of the fluid with a surface but to a fluid moving tangentially to the surface. Also, a typical mass-based drag equation, like Bernoulli's equation, has a coefficient of 1/2; however, it refers to a body moving through a fluid, where the fluid encountered by the body is not stopped relative to the body (i.e., brought up to its speed) like is the case in this problem.
A) Tolerance
Tolerance is developed after using a drug repeatedly, so the body adapts to it. Because of that, people who develop a tolerance would then need to use more of that drug to get the same effect.