Answer:
![g=13.42\frac{m}{s^2}](https://tex.z-dn.net/?f=g%3D13.42%5Cfrac%7Bm%7D%7Bs%5E2%7D)
Explanation:
1) Notation and info given
represent the density at the center of the planet
represent the densisty at the surface of the planet
r represent the radius
represent the radius of the Earth
2) Solution to the problem
So we can use a model to describe the density as function of the radius
![r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}](https://tex.z-dn.net/?f=r%3D0%2C%20%5Crho%280%29%3D%5Crho_%7Bcenter%7D%3D13000%20%5Cfrac%7Bkg%7D%7Bm%5E3%7D)
![r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}](https://tex.z-dn.net/?f=r%3D6.371x10%5E%7B6%7Dm%2C%20%5Crho%286.371x10%5E%7B6%7Dm%29%3D%5Crho_%7Bsurface%7D%3D2100%20%5Cfrac%7Bkg%7D%7Bm%5E3%7D)
So we can create a linear model in the for y=b+mx, where the intercept b=
and the slope would be given by ![m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%3D%5Cfrac%7B%5Crho_%7Bsurface%7D-%5Crho_%7Bcenter%7D%7D%7Br_%7Bearth%7D-0%7D)
So then our linear model would be
![\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r](https://tex.z-dn.net/?f=%5Crho%20%28r%29%3D%5Crho_%7Bcenter%7D%2B%5Cfrac%7B%5Crho_%7Bsurface%7D-%5Crho_%7Bcenter%7D%7D%7Br_%7Bearth%7D%7Dr%20)
Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be
.
And the total mass would be given by the following integral
![M=\int \rho (r) dV](https://tex.z-dn.net/?f=M%3D%5Cint%20%5Crho%20%28r%29%20dV)
Replacing dV we have the following result:
![M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)](https://tex.z-dn.net/?f=M%3D%5Cint_%7B0%7D%5E%7B2%5Cpi%7Dd%5Cphi%20%5Cint_%7B0%7D%5E%7B%5Cpi%7Dsin%5Ctheta%20d%5Ctheta%20%5Cint_%7B0%7D%5E%7Br_%7Bearth%7D%7D%28r%5E2%20%5Crho_%7Bcenter%7D%2B%5Cfrac%7B%5Crho_%7Bsurface%7D-%5Crho_%7Bcenter%7D%7D%7Br_%7Bearth%7D%7Dr%29)
We can solve the integrals one by one and the final result would be the following
![M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})](https://tex.z-dn.net/?f=M%3D4%5Cpi%28%5Cfrac%7Br%5E3_%7Bearth%7D%5Crho_%7Bcenter%7D%7D%7B3%7D%2B%5Cfrac%7Br%5E4_%7Bearth%7D%7D%7B4%7D%20%5Cfrac%7B%5Crho_%7Bsurface%7D-%5Crho_%7Bcenter%7D%7D%7Br_%7Bearth%7D%7D%29)
Simplyfind this last expression we have:
![M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})](https://tex.z-dn.net/?f=M%3D%5Cfrac%7B4%5Cpi%5Crho_%7Bcenter%7Dr%5E3_%7Bearth%7D%7D%7B3%7D%2B%5Cpi%20r%5E3_%7Bearth%7D%28%5Crho_%7Bsurface%7D-%5Crho_%7Bcenter%7D%29)
![M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})](https://tex.z-dn.net/?f=M%3D%5Cpi%20r%5E3_%7Bearth%7D%28%5Cfrac%7B4%7D%7B3%7D%5Crho_%7Bcenter%7D%2B%5Crho_%7Bsurface%7D-%5Crho_%7Bcenter%7D%29)
![M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]](https://tex.z-dn.net/?f=M%3D%5Cpi%20r%5E3_%7Bearth%7D%5B%5Crho_%7Bsurface%7D%2B%5Cfrac%7B1%7D%7B3%7D%5Crho_%7Bcenter%7D%5D)
And replacing the values we got:
![M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg](https://tex.z-dn.net/?f=M%3D%5Cpi%20%286.371x10%5E%7B6%7Dm%29%5E2%28%5Cfrac%7B1%7D%7B3%7D13000%20%5Cfrac%7Bkg%7D%7Bm%5E3%7D%2B2100%20%5Cfrac%7Bkg%7D%7Bm%5E3%7D%29%3D8.204x10%5E%7B24%7Dkg)
And now that for any shape the gravitational acceleration is given by:
![g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}](https://tex.z-dn.net/?f=g%3D%5Cfrac%7BMG%7D%7Br%5E2_%7Bearth%7D%7D%3D%5Cfrac%7B%286.67408x10%5E%7B-11%7D%5Cfrac%7Bm%5E3%7D%7Bkgs%5E2%7D%29%2A8.204x10%5E%7B24%7Dkg%7D%7B%286371000m%29%5E2%7D%3D13.48%5Cfrac%7Bm%7D%7Bs%5E2%7D)