Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
Answer:
l= 4 mi : width of the park
w= 1 mi : length of the park
Explanation:
Formula to find the area of the rectangle:
A= w*l Formula(1)
Where,
A is the area of the rectangle in mi²
w is the width of the rectangle in mi
l is the width of the rectangle in mi
Known data
A = 4 mi²
l = (w+3)mi Equation (1)
Problem development
We replace the data in the formula (1)
A= w*l
4 = w* (w+3)
4= w²+3w
w²+3w-4= 0
We factor the equation:
We look for two numbers whose sum is 3 and whose multiplication is -4
(w-1)(w+4) = 0 Equation (2)
The values of w for which the equation (2) is zero are:
w = 1 and w = -4
We take the positive value w = 1 because w is a dimension and cannot be negative.
w = 1 mi :width of the park
We replace w = 1 mi in the equation (1) to calculate the length of the park:
l= (w+3) mi
l= ( 1+3) mi
l= 4 mi
Answer:
Explanation:
The lift is going down with acceleration
Initial speed u = 0
Final speed v = 6 m/s
distance s = 15.25 m
acceleration a = ?
v² = u² + 2 a s
6² = 0 + 2 x a x 15.25
a = 1.18 m /s²
Elevator is going down with acceleration .
mg - T = ma where T is tension in the cable .
722 x 9.8 - T = 722 x 1.18
7075.6 - T = 851.96
T = 6223.64 N .
Ok. PEMDAS tells us to take care of the square first. When we do that, the denominator becomes
(6.4)^2 x 10^12
= 40.96 x 10^12 .
Now it's just a matter of mashing out the fraction.
The 'mantissa' (the number part) is
6/40.96 = 0.1465
and the order of magnitude is
10^24 / 10^12 = 10^12 .
Put it all together and you've got
1.465 x 10^11 .