Answer:
hlw its jess bregoli
your answer is here
SI (International System of Units) (meter-kilogram-second-ampere-kelvin-mole-candela)
FPS (foot-pound-second)
MKS (meter-kilogram-second)
CGS (centimeter-gram-second)
EMU (Electromagnetic) (centimeter-gram-second-abampere)
ESU (Electrostatic) (centimeter-gram-second-abcoulomb)
Atomic (bohr-electron mass-atomic second-electron)
MTS (meter-tonne-second)
Explanation:
hope it may help you !!
Answer:
A.Gravity acts to pull the object down
D.The object’s inertia carries it forward.
E.The path of the object is curved.
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform motion along the horizontal direction, with constant horizontal speed
- A vertical motion with constant acceleration of g = 9.8 m/s^2 downward (acceleration due to gravity), due to the presence of the force of gravity, so the vertical velocity changes (increases in the downward direction)
As a result, the combined motion of the projectile has a curved trajectory (parabolic, more specifically). So the following options are correct:
A.Gravity acts to pull the object down --> gravity acts along the vertical direction
D.The object’s inertia carries it forward. --> there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal motion continues with constant speed
E.The path of the object is curved
<u>Gay Lussac’s law</u> state that the pressure and absolute temperature of a fixed quantity of a gas are directly proportional under constant volume conditions.
<h2>Further Explanation
</h2><h3>Gay-Lussac’s law </h3>
- It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
- Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Boyles’s law
</h3>
- This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
- Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
<h3>Charles’s law
</h3>
- It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
- Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law </h3>
- It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
- Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.
Keywords: Gas law, Gay-Lussac’s law, pressure, volume, absolute temperature, ideal gas
<h3>Learn more about:
</h3>
- Gay-Lussac’s law: brainly.com/question/2644981
- Charles’s law: brainly.com/question/5016068
- Boyles’s law: brainly.com/question/5016068
- Dalton’s law: brainly.com/question/6491675
Level: High school
Subject: Chemistry
Topic: Gas laws
Sub-topic: Gay-Lussac’s law
Answer:
R = 1.2295 10⁵ m
Explanation:
After reading your problem they give us the diameter of the lens d = 4.50 cm = 0.0450 m, therefore if we use the Rayleigh criterion for the resolution in the diffraction phenomenon, we have that the minimum separation occurs in the first minimum of diffraction of one of the bodies m = 1 coincides with the central maximum of the other body
θ = 1.22 λ / D
where the constant 1.22 leaves the resolution in polar coordinates and D is the lens aperture
how angles are measured in radians
θ = y / R
where y is the separation of the two bodies (bulbs) y = 2 m and R the distance from the bulbs to the lens
R =
let's calculate
R =
R = 1.2295 10⁵ m
Answer:
The work done by gravity is 784 J.
Explanation:
Given:
Mass of the block is, 
Height to which it is raised is, 
Acceleration due to gravity is, 
Now, work done by gravity is equal to the product of force of gravity and the distance moved in the direction of gravity. So,

Force of gravity is given as the product of mass and acceleration due to gravity.
. Now,

Therefore, the work done by gravity is 784 J.