Answer:
g=GM/R^2
Universal Gravutation Constant:
f=GM×m/R^2
Force can be also expressed as
f=m×g
so,
mg=GMxm/R^2
The m gets cancelled so
g=GM/R^2
Answer:
R' = 4R
The resistance will become 4 times the initial value.
Explanation:
The resistance of a wire at room temperature, is given by the following formula:
R = ρL/A ----------- equation 1
where,
R = Resistance of wire
ρ = resistivity of the material
L = Length of wire
A = Cross-sectional area of wire
Now, if the length (L) is multiplied by 4, then resistance will become:
R' = ρ(4L)/A
R' = 4 (ρL/A)
using equation 1:
<u>R' = 4R</u>
<u>The resistance will become 4 times the initial value.</u>
Answer:
A) True
Explanation:
Researchers have detected numerous jets of gas ejected from poles of young stars and planetary nebulae.
By examining images of hydrogen molecules excited at infrared wavelengths, scientists have been able to see through the gas and dust in the Milky Way, in order to observe the most distant targets. These goals are normally hidden from view and many of them have never been seen before.
The entire study area covers approximately 1,450 times the size of the full moon, or the equivalent of an image of 95 gigapixels. The survey reveals jets emanating from proto-stars and planetary nebulas, as well as remnants of supernovae, the illuminated edges of vast clouds of gas and dust, and the warm regions that surround massive stars and their associated groups of smaller stars.
Answer:
735 J
Explanation:
From the question given above, the following data were obtained:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy is simply defined as the product of weight of the object and height to which the object is raised. Mathematically, it is expressed as:
Potential energy = weight × height
With the above formula, we can obtain the potential energy of the coconut as follow:
Weight (W) = 49 N
Height (h) = 15 m
Potential energy =?
Potential energy = weight × height
Potential energy = 49 × 15
Potential energy = 735 J
Thus, the potential energy of the coconut is 735 J
<span>Surface ocean currents are generally wind-driven. However, the rotation of the Earth affects the way the waters move through currents. Without rotation, currents may not exist.</span>