Answer:
x = 5[km]
Explanation:
We must convert the time from minutes to hours.
![t=30[min]*\frac{1h}{60min}= 0.5[h]\\](https://tex.z-dn.net/?f=t%3D30%5Bmin%5D%2A%5Cfrac%7B1h%7D%7B60min%7D%3D%200.5%5Bh%5D%5C%5C)
We know that speed is defined as the relationship between space and time.

where:
x = space [m]
t = time = 0.5 [h]
v = velocity [m/s]
Now replacing:
![x = 10[\frac{km}{h} ]*0.5[h]\\x=5[km]](https://tex.z-dn.net/?f=x%20%3D%2010%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A0.5%5Bh%5D%5C%5Cx%3D5%5Bkm%5D)
Answer:
False
Explanation:
Becuase the average amu of 40 is represented
Answer:
Answer in Explanation
Explanation:
Whenever we talk about the gravitational potential energy, it means the energy stored in a body due to its position in the gravitational field. Now, we know that in the gravitational field the work is only done when the body moves vertically. If the body moves horizontally on the same surface in the Earth's Gravitational Field, then the work done on the body is considered to be zero. Hence, the work done or the energy stored in the object while in the gravitational field is only possible if it moves vertically. This vertical distance is referred to as height. <u>This is the main reason why we require height in the P.E formula and calculations.</u>
The derivation of this formula is as follows:
Work = Force * Displacement
For gravitational potential energy:
Work = P.E
Force = Weight = mg
Displacement = Vertical Displacement = Height = h
Therefore,
P.E = mgh
Answer:

Explanation:
As given point p is equidistant from both the charges
It must be in the middle of both the charges
Assuming all 3 points lie on the same line
Electric Field due a charge q at a point ,distance r away

Where
- q is the charge
- r is the distance
-
is the permittivity of medium
Let electric field due to charge q be F1 and -q be F2
I is the distance of P from q and also from charge -q
⇒
F1
F2
⇒
F1+F2=
Let vb be the velocity of the motorboat and let vs be the velocity of the stream.
We know that when she drives upstream the velocity is 8 m/s, in this scenario the velocities point in opposite directions, then we have the equations:

When she drives downstream the velocites point in the same direction then we have the equation:

hence we have the system of equations:

Solving the first equation for the velocity of the boat we have:

Plugging this in the second equation we have:

Therefore, the velocity of the stream is 2 m/s