Step-by-step explanation:
a) Line AB ll DC
b) Line GH acts as a transversal.
c) <10 ; <12 , <9 ; <11
d) <8 = 180° - 120° = <u>60</u><u>°</u><u>(</u><u>Ans</u><u>)</u>
<6 = <u>120</u><u>°</u><u>(</u><u>Ans</u><u>)</u>
<5 = <u>60</u><u>°</u><u>(</u><u>Ans</u><u>)</u>
<4 = <u>60</u><u>°</u><u>(</u><u>Ans</u><u>)</u>
<3 = <u>120</u><u>°</u><u>(</u><u>Ans</u><u>)</u>
<2 = <u>120</u><u>°</u><u>(</u><u>Ans</u><u>)</u>
<1 = <u>60</u><u>°</u><u>(</u><u>Ans</u><u>)</u>
The awnser is Shari is using the same ratio as Mark's
Answer:
18.54
Step-by-step explanation:
sine is opposite/hypotenuse, and you have opposite (b=15), so use that
sin(54) = 15/c
c = 15/sin54
then use calculator
c = 18.54
Step-by-step explanation:
so fill in 88 where the x is so
y = 0.9 (88) - 1
y = 78.2
Given:
Henry can type 3500 words in 70 minutes.
Colin can type 1500 in 30 minutes.
Brian can type 2200 words in 40 minutes.
To find:
The person who types at the fastest rate of words per minute.
Solution:
We know that,

Using this formula, we get



Since 55>50, therefore Brian's types at the fastest rate of words per minute.