Answer:
Approximately 10,5
Explanation:
The question is not really very specific, because it would need the percentages of those isotopes in the nature. As they are not shown, it should be the median of those two numbers.
atomic weight ≈
= 10,5
If you check a periodic table, you'll see it's actually 10,8, but that's because of the thing I told you at first (percentages missing).
Hope I could help.
Answer : The rate constant at 785.0 K is, 
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= ?
= activation energy for the reaction = 262 kJ/mole = 262000 J/mole
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:
![\log (\frac{K_2}{6.1\times 10^{-8}s^{-1}})=\frac{262000J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{785.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B6.1%5Ctimes%2010%5E%7B-8%7Ds%5E%7B-1%7D%7D%29%3D%5Cfrac%7B262000J%2Fmole%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B785.0K%7D%5D)

Therefore, the rate constant at 785.0 K is, 
Answer:

Explanation:
Hello,
In this case, by using the ideal gas equation, er can compute the volume of fluorine gas as shown below:

Best regards.
Answer:
The answer to your question is 432 g of CO₂
Explanation:
Data
CaCO₃ = 983 g
CaO = 551 g
CO₂ = ?
Balanced reaction
CaCO₃ (s) ⇒ CaO (s) + CO₂ (g)
This reaction is balanced, to solve this problem just remember the Lavoisier Law of conservation of mass that states that the mass of the reactants is equal to the mass of the products.
Mass of reactants = Mass of products
Mass of CaCO₃ = Mass of CaO + Mass of CO₂
Solve for CO₂
Mass of CO₂ = Mass of CaCO₃ - Mass of CaO
Mass of CO₂ = 983 g - 551 g
Simplification
Mass of CO₂ = 432 g
Answer: Oxygen.
Explanation: The -ate is used for the ion that has the largest number of Oxygen atoms. The -ite would be used for the ion with the smaller amount of oxygen atoms.