Answer:
The volume of the balloon will be 5.11L
Explanation:
An excersise to solve with the Ideal Gases Law
First of all, let's convert the pressure in mmHg to atm
1 atm = 760 mmHg
760 mmHg ___ 1 atm
755.4 mmHg ____ (755.4 / 760) = 0.993 atm
922.3 mmHg ____ ( 922.3 / 760) = 1.214 atm
T° in K = 273 + °C
28.5 °C +273 = 301.5K
26.35°C + 273= 299.35K
P . V = n . R .T
First situation: 0.993atm . 6.25L = n . 0.082 . 301.5K
(0.993atm . 6.25L) / 0.082 . 301.5 = n
0.251 moles = n
Second situation:
1.214 atm . V = 0.251 moles . 0.082 . 301.5K
V = (0.251 moles . 0.082 . 301.5K) / 1.214 atm
V = 5.11L
We will get the molality from this formula:
Molality = no.of moles of solute / Kg of solvent
So first we need the no.of moles of KNO3 = the mass of KNO3 / molar mass of KNO3
no.of moles of KNO3 = 175 / 101.01 = 1.73 mol
By substitution in the molality formula:
∴ molality = 1.73 / (750/1000) = 2.3 Molal
Answer:
option b
Explanation:
When the energy is released the process is called exothermic reaction. This happens when the bonds are broken in the reactants and the system release energy.