Answer:
A. The rate of heat transfer through the material would increase.
Explanation:
To calculate the heat transfer in a heat exchanger you decide that there is not heat leakage to the surroundings, that means that magnitude of the two transfer rates will be equal. Any heat lost by the hot fluid, is gained by the cold fluid. The equation that describes this is Q = m×Cp×dT
Where:
heat = mass flow ×specific heat capacity × temperature difference
So if we increase the rate of flow of cooling water and the other variables that ypu can control remain the same, the result is that the rate of heat transfer through the material would increase, as it is stated in option a.
The relative molecular mass of acid A : 50 g/mol
<h3>Further explanation</h3>
Given
40.0 cm³(40 ml) of 0.2M sodium hydroxide
0.2g of a dibasic acid
Required
the relative molecular mass of acid A
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence(number of H⁺/OH⁻)
NaOH ⇒ n = 1
Dibasic acid = diprotic acid (such as H₂SO₄)⇒ n = 2
mol = M x V
Input the value in the formula :(1 = NaOH, 2=dibasic acid)
0.2 x 40 x 1 = M₂ x V₂ x 2
M₂ x V₂ = 4 mlmol = 4.10⁻³ mol ⇒ mol of Acid A
The relative molecular mass of acid A (M) :

Answer:
c
Explanation: just a chemachal