K2SO4 MgSO4 Al2(SO4)3 Ge2(SO4)4
KNO3 Mg(NO3)2 Al(NO3)3 Ge(NO3)4
KCH3COO Mg(CH3COO)2 Al(CH3COO)3 Ge(CH3COO)4
Note: all of the numerical are subscript to each element or compound.
Answer:
Actually, The Henderson - Hasselbalch equation allows you to calculate the pH of the buffer by using the pKa of the weak acid and the ratio that exists between the concentrations of the weak cid and conjugate base. The pKa of formic acid is equal to 3.75. In this case, the pH of the solution will be equal to the acid's pKa .
Answer: .B. 13C NMR spectra display peaks for only carbons that bear hydrogen atoms.
Explanation:
The statements that are true about 13C NMR are:
A. In 13C proton-decoupled NMR spectra, all peaks are singlets.
C 13C NMR chemical shifts occur over a greater range than 1H NMR chemical shifts.
D. 13C NMR easily differentiates between the different hybridized carbons (sp3, sp2, and sp hybridized carbons).organic-chemistry
Therefore, the option that isn't true is option B. "13C NMR spectra display peaks for only carbons that bear hydrogen atoms". This is false because 13C NMR will show every peak in the spectrum and it doesn't matter if it's only carbons that bear hydrogen atoms as everything will be shown.
Explanation:
Iron, like other metals, conducts heat and electricity, has a luster, and forms positive ions in its chemical reactions. Pure iron is fairly soft and can easily be shaped and formed when hot. Its color is silvery white. Iron is easily magnetized.
Answer:
% (COOK)2H2O = 37.826 %
Explanation:
mix: (COOK)2H2O + Ca(OH)2 → CaC2O4 + H2O
∴ mass mix = 4.00 g
∴ mass (CaC2O4)H2O = 1.20 g
∴ Mw (COOK)2H2O = 184.24 g/mol
∴ Mw (CaC2O4)H2O = 146.12 g/mol
∴ r = mol (COOK)2H2O / mol (CaC2O4)H2O = 1
- % (COOK)2H2O = (mass (COOK)2H2O / mass Mix) × 100
⇒ mass (COOK)2H2O = (1.20 g (CaC2O4)H2O)×(mol (CaC2O4)H2O / 146.12 g (CaC2O4)H2O)×(mol (COOK)2H2O/mol (CaC2O4)H2O)×(184.24 g (COOK)2H2O/mol (COOK)2H2O)
⇒ mass (COOK)2H2O = 1.513 g
⇒ % (COOK)2H2O = ( 1.513 g / 4 g )×100
⇒ % (COOK)2H2O = 37.826 %