Answer:

Explanation:
The balanced equation is
I₂(g) + Br₂(g) ⇌ 2IBr(g)
Data:
Kc = 8.50 × 10⁻³
n(IBr) = 0.0600 mol
V = 1.0 L
1. Calculate [IBr]
![\text{[IBr]} = \dfrac{\text{0.0600 mol}}{\text{1.0 L}} = \text{0.0600 mol/L}](https://tex.z-dn.net/?f=%5Ctext%7B%5BIBr%5D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B0.0600%20mol%7D%7D%7B%5Ctext%7B1.0%20L%7D%7D%20%3D%20%5Ctext%7B0.0600%20mol%2FL%7D)
2. Set up an ICE table.

3. Calculate [I₂]
4. Convert the temperature to kelvins
T = (150 + 273.15) K = 423.15 K
5. Calculate p(I₂)

Pete because 2.5 x 2.3 is faster
Answer:
The process of photosynthesis in plants releases oxygen into the atmosphere. Respiration by plants and animals, as they use the energy stored in food, and the process of decomposition of dead organisms, releases carbon dioxide into the atmosphere. All three work together to maintain the carbon dioxide-oxygen cycle.
Answer:
The molar solubility of lead bromide at 298K is 0.010 mol/L.
Explanation:
In order to solve this problem, we need to use the Nernst Equaiton:
![E = E^{o} - \frac{0.0591}{n} log\frac{[ox]}{[red]}](https://tex.z-dn.net/?f=E%20%3D%20E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D)
E is the cell potential at a certain instant, E⁰ is the cell potential, n is the number of electrons involved in the redox reaction, [ox] is the concentration of the oxidated specie and [red] is the concentration of the reduced specie.
At equilibrium, E = 0, therefore:
![E^{o} = \frac{0.0591}{n} log \frac{[ox]}{[red]} \\\\log \frac{[ox]}{[red]} = \frac{nE^{o} }{0.0591} \\\\log[red] = log[ox] - \frac{nE^{o} }{0.0591}\\\\[red] = 10^{ log[ox] - \frac{nE^{o} }{0.0591}} \\\\[red] = 10^{ log0.733 - \frac{2x5.45x10^{-2} }{0.0591}}\\\\](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20%20%3D%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%5C%5C%5C%5Clog%20%5Cfrac%7B%5Box%5D%7D%7B%5Bred%5D%7D%20%3D%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%20%5C%5C%5C%5Clog%5Bred%5D%20%3D%20%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log%5Box%5D%20-%20%20%5Cfrac%7BnE%5E%7Bo%7D%20%7D%7B0.0591%7D%7D%20%5C%5C%5C%5C%5Bred%5D%20%3D%2010%5E%7B%20log0.733%20-%20%20%5Cfrac%7B2x5.45x10%5E%7B-2%7D%20%20%7D%7B0.0591%7D%7D%5C%5C%5C%5C)
[red] = 0.010 M
The reduction will happen in the anode, therefore, the concentration of the reduced specie is equivalent to the molar solubility of lead bromide.
As we can see the chemical equation is balanced.K3PO4 + Al(NO3)3 → 3KNO3 + AlPO4
So, by principle of conservation of mass when 1 mole of K3PO4 reacts with 1 mol of Al(NO3)3 , it peoduces 3 mol of KNO3 and 1 mol of AlPO4
So, when 2.5 moles of potassium phosphate react and Al(NO3)3 is present in excess , 2.5*3= 7.5 mol of KNO3 is formed