Step-by-step explanation:
<em>Hello</em><em>,</em><em> </em><em>there</em><em>!</em><em>!</em><em>!</em>
<em>The</em><em> </em><em>answer is option</em><em> </em><em>D</em><em>.</em>
<em>I</em><em> </em><em>have</em><em> </em><em>given</em><em> </em><em>solution</em><em> </em><em>on</em><em> </em><em>the</em><em> </em><em>picture</em><em>.</em>
<em>Hope it helps</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
Given : BRDG is a kite that is inscribed in a circle,
With BR = RD and BG = DG
To prove : RG is a diameter
Proof:
Since, RG is the major diagonal of the kite BRDG,
By the property of kite,
∠ RBG = ∠ RDG
Also, BRDG is a cyclic quadrilateral,
Therefore, By the property of cyclic quadrilateral,
∠ RBG + ∠ RDG = 180°
⇒ ∠ RBG + ∠ RBG = 180°
⇒ 2∠ RBG = 180°
⇒ ∠ RBG = 90°
⇒ ∠ RDG = 90°
Since, Angle subtended by a diameter or semicircle on any point of circle is right angle.
⇒ RG is the diameter of the circle.
Hence, proved.
Answer:
possibly china, but not confirmed.
Step-by-step explanation:
Answer:
your question Is not in Mark