Answer:

Explanation:
M = Mass of Earth
G = Gravitational constant
R = Radius of Earth
The acceleration due to gravity on Earth is

On new planet

Dividing the two equations we get

The acceleration due to gravity on the other planet is 
Answer:
T = 92.8 min
Explanation:
Given:
The altitude of the International Space Station t minutes after its perigee (closest point), in kilometers, is given by:

Find:
- How long does the International Space Station take to orbit the earth? Give an exact answer.
Solution:
- Using the the expression given we can extract the angular speed of the International Space Station orbit:

- Where the coefficient of t is angular speed of orbit w = 2*p / 92.8
- We know that the relation between angular speed w and time period T of an orbit is related by:
T = 2*p / w
T = 2*p / (2*p / 92.8)
Hence, T = 92.8 min
The player that possess the best ball handling skills and usually handles
the ball often is referred to as the point guard.
Point guards in basketball are referred to as the players who have certain
characteristics such as speed ,an excellent ball handling skills and
leadership qualities.
Point guards is similar to the creative midfielder in soccer which helps to
dictate play and create chances for other team mates which is why they
handle the ball often.
Read more on brainly.com/question/25759951
Answer:
Dont worry ,
One day you will find the love of your life
Explanation:
Answer: To increase the rigidity of the system you could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.
Explanation:
When a rule is displaced from its vertical position, it oscillates back and forth because of the restoring force opposing the displacement. That is, when the rule is on the left there is a force to the right.
By holding a ruler with one hand and deforming it with the other a force is generated in the opposite direction which is known as the restoring force. The restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. The momentum gained causes the ruler to move to the right leading to opposite deformation. This moves the ruler again to the left. The whole process is repeated until dissipative forces reduce the motion causing the ruler to come to rest.
The relationship between restoring force and displacement was described by Hooke's law. This states that displacement or deformation is directly proportional to the deforming force applied.
F= -kx, where,
F= restoring force
x= displacement or deformation
k= constant related to the rigidity of the system.
Therefore, the larger the force constant, the greater the restoring force, and the stiffer the system.