Answer:
v = 34.128 km/hr
Explanation:
Given that,
The initial speed of a truck, u = 0
Acceleration of the truck, a = 0.3 m/s²
Distance moved, d = 150 m
Let the final speed of the truck is v. Using third equation of motion i.e.

Put all the values,

or
v = 34.128 km/h
So, the final speed of the truck is equal to 34.128 km/h.
Answer:
The right approach will be Option C "Group 12".
Explanation:
- A table that further arranges the chemical components in addition to expanding the electron configuration. Elements possessing identical characteristics are positioned in almost the same section (column or group), although elements in almost the same row become positioned with a similar amount of electron spheres.
- Group 12 components therefore partially replaced (n − 1)d subshells, and therefore aren't metals, technically accurate. However, although much their chemistry seems to be comparable to something like the components throughout the d block which includes establishing themselves.
Some other options in question are not relevant to something like the given scenario. Because then the option here is just the right one.
Answer:
object will remain in the motion if no external force acts on it for ex(roughness of surface,air resistance) according to inertia ,inertia is a that property of matter that continues its existing state either in rest or motio
Answer:
Turns of the primary coil: 500
Current in the primary coil: Ip= 0.01168A
Explanation:
Considering an ideal transformer I can propose the following equations:
Vp×Ip=Vs×Is
Vp= primary voltaje
Ip= primary current
Vs= secondary voltaje
Is= secondary current
Np×Vs=Ns×Vp
Np= turns of primary coil
Ns= turns of secondary coil
From these equations I can clear the number of turns of the primary coil:
Np= (Ns×Vp)/Vp = (20×120V)/4.8V = 500 turns
To determine the current in the secondary coil I use the following equation:
Is= (1.4W)/4.8V = 0.292A
Therefore I can determine the current in the primary coil with the following equation:
Ip= (Vs×Is)/Vp = (4.8V×0.292A)/120V = 0.01168A