Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2
I would said A is the best option if i’m wrong sorry
Answer:
4.42 x 10⁷ W/m²
Explanation:
A = energy absorbed = 500 J
η = efficiency = 0.90
E = Total energy
Total energy is given as
E = A/η
E = 500/0.90
E = 555.55 J
t = time = 4.00 s
Power of the beam is given as
P = E /t
P = 555.55/4.00
P = 138.88 Watt
d = diameter of the circular spot = 2.00 mm = 2 x 10⁻³ m
Area of the circular spot is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
Intensity of the beam is given as
I = P /A
I = 138.88 / (3.14 x 10⁻⁶)
I = 4.42 x 10⁷ W/m²
Answer:
B. 7.07 m/s
Explanation:
The velocity of the stone when it leaves the circular path is its tangential velocity,
, which is given by

where
is the angular speed and
is the radius of the circular path.
is given by

where
is the frequency of revolution.
Thus

Using values from the question,

<em>Note the conversion of 75 cm to 0.75 m</em>

Water gets to the leaves in the tops of the tallest trees by something called the cohesion-tension theory. Water has two very unique properties called adhesion and cohesion. Cohesion is the tendency of water molecules to stick together with one another. The water sticks together, leaving no room for air, strengthening the "force" of the water going up the tree. The water also sticks to the sides of the xylem inside the tree. In addition to these properties, there are also the factors of negative and positive water potential. For more information, look up more details of the cohesion-tension theory.