Answer:
a
The orbital speed is 
b
The escape velocity of the rocket is 
Explanation:
Generally angular velocity is mathematically represented as
Where T is the period which is given as 1.6 days = 
Substituting the value


At the point when the rocket is on a circular orbit
The gravitational force = centripetal force and this can be mathematically represented as

Where G is the universal gravitational constant with a value 
M is the mass of the earth with a constant value of 
r is the distance between earth and circular orbit where the rocke is found
Making r the subject
![r = \sqrt[3]{\frac{GM}{w^2} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BGM%7D%7Bw%5E2%7D%20%7D)
![= \sqrt[3]{\frac{6.67*10^{-11} * 5.98*10^{24}}{(4.45*10^{-5})^2} }](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B6.67%2A10%5E%7B-11%7D%20%2A%205.98%2A10%5E%7B24%7D%7D%7B%284.45%2A10%5E%7B-5%7D%29%5E2%7D%20%7D)

The orbital speed is represented mathematically as

Substituting value

The escape velocity is mathematically represented as

Substituting values


lol what is this question
The answer is D because it’s going by the miles
A, it's more about the force with leverage.
Let
denote the position vector of the ball hit by player A. Then this vector has components

where
is the magnitude of the acceleration due to gravity. Use the vertical component
to find the time at which ball A reaches the ground:

The horizontal position of the ball after 0.49 seconds is

So player B wants to apply a velocity such that the ball travels a distance of about 12 meters from where it is hit. The position vector
of the ball hit by player B has

Again, we solve for the time it takes the ball to reach the ground:

After this time, we expect a horizontal displacement of 12 meters, so that
satisfies

