As we know the formula of kinetic energy is

here given that
KE = 150,000 J
mass = 120 kg
we can use this to find speed



So speed of above object is 50 m/s
To solve this problem we will apply the concepts related to the balance of forces. We will decompose the forces in the vertical and horizontal sense, and at the same time, we will perform summation of torques to eliminate some variables and obtain a system of equations that allow us to obtain the angle.
The forces in the vertical direction would be,



The forces in the horizontal direction would be,



The sum of Torques at equilibrium,




The maximum friction force would be equivalent to the coefficient of friction by the person, but at the same time to the expression previously found, therefore


Replacing,


Therefore the minimum angle that the person can reach is 46.9°
A. True
Hope this helps :)
The answer is 1,600 J.
A work (W) can be expressed as a product of a force (F) and a
distance (d):
W = F · d<span>
We have:
W = ?
F = 20 N = 20 kg*m/s</span>²
d = 80 m
_____
W = 20 kg*m/s² * 80 m
W = 20 * 80 kg*m/s² * m
W = 1600 kg*m²/s²
W = 1600 J