I'm pretty sure its Venus!!!
The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
The Kinetic energy of the stuntman is equal to the elastic potential energy of the spring.
<h3 /><h3>Velocity: </h3>
This is the ratio of displacement to time. The S.I unit of Velocity is m/s. The velocity of the stuntman can be calculated using the formula below.
⇒ Formula:
- mv²/2 = ke²/2
- mv² = ke².................. Equation 1
⇒ Where:
- m = mass of the stuntman
- v = velocity of the stuntman
- k = force constant of the spring
- e = compression of the spring
⇒ Make v the subject of the equation
- v = √(ke²/m)................. Equation 2
From the question,
⇒ Given:
- m = 48 kg
- k = 75 N/m
- e = 4 m
⇒ Substitute these values into equation 2
- v = √[(75×4²)/48]
- v = √25
- v = 5 m/s.
Hence, The velocity of the stuntman, once he has left the cannon is 5 m/s.
The right option is O A. 5 m/s
Learn more about velocity here: brainly.com/question/10962624
I would say that this is the first law of thermodynamics.
Answer:
12 nC
Explanation:
Capacity of the parallel plate capacitor
C = ε₀ A/d
ε₀ is constant having value of 8.85 x 10⁻¹² , A area of plate , d is distance between plate
Area of plate = π r²
= 3.14 x (0.8x 10⁻²)²
= 2 x 10⁻⁴
C = ( 8.85 X 10⁻¹² x 2 x 10⁻⁴ ) / 2.8 x 10⁻³
= 7.08 x 10⁻¹³
Potential difference between plate = field strength x distance between plate
= 6 x 10⁶ x 2.8 x 10⁻³
= 16.8 x 10³ V
Charge on plate = CV
=7.08 x 10⁻¹³ X 16.8 X 10³
11.9 X 10⁻⁹ C
12 nC .