The Calvin cycle<span> refers to the light-independent reactions in photosynthesis that take place in three key steps. Although the </span>Calvin Cycle<span> is not directly dependent on light, it is indirectly dependent on light since the necessary energy carriers (ATP and NADPH) are products of light-dependent reactions.
So basically it indirectly needs the light, even it's called light-independant reaction.
So the answer is the last one.</span>
Given that
Velocity of missile (v) = 20 m/s ,
Angle of missile (Θ) = 53°
Determine , Vertical component = v sin Θ
= 20 sin 53°
= 15.97 m/s
In the first case, the force acting on the spring is the weight of the mass:

This force causes a stretching of

on the spring, so we can use these data to find the spring constant:

In the second case, the first mass is replaced with a second mass, whose weight is

And since we know the spring constant, we can calculate the new elongation of the spring:
Answer:
heat required in pan B is more than pan A
Explanation:
Heat required to raise the temperature of the substance is given by the formula

now we know that both pan contains same volume of water while the mass of pan is different
So here heat required to raise the temperature of water in Pan A is given as


Now similarly for other pan we have


So here by comparing the two equations we can say that heat required in pan B is more than pan A
The power of the lamp would be calculated with the equation of ohm laws. P = U x I = 122V x 0.1A = 12.2W