Answer:
theoretically speaking I don't even wanna believe it's possible but if it does then then you should check for abortion
Answer:
1)a. It is constant the whole time the ball is in free-fall.
2)b. = 14 m/s
3) e. = 19.6 m/s
Explanation:
1) given that the only force acting on the ball is gravity, gravity acts along the vertical axis. Since no other force acts on the ball then the horizontal velocity will remain constant all through the flight since there is no horizontal force acting on the ball.
2) speed = distance/time
horizontal distance = 56m
Time = 4 seconds
Speed = 56m/4s = 14m/s
3) acceleration due to gravity g = 9.8m/s^2
Initial vertical velocity = u
Final vertical velocity = v = -u
Using the law of motion;
v = u + at
a = acceleration = -g = -9.8m/s^2
t = time of flight = 4
Substituting the values;
-u = u - 4(9.8)
-2u = -4(9.8)
u = -4(9.8)/-2
u = 2(9.8) = 19.6 m/s
Initial vertical velocity = u = 19.6 m/s
The correct answer is D: Watt. This unit was named after James Watt, and
is used to express the equivalent of one joule per second in energy. In
experiments and on the packaging for electrical products such as light-bulbs, the measurement will usually be written in its abbreviated
format: W.
<span />
The velocity of the object s calculated as 22.1 m/s.
<h3>What is the speed of the object?</h3>
Given that we can write that;
v^2 = u^2 + 2gh
Now u = 0 m/s because the object was dropped from a height
v^2 = 2gh
v = √2 * 9.8 * 25
v = 22.1 m/s
Learn more about velocity:brainly.com/question/18084516
#SPJ1
Answer:
v = 29.4m/s
Explanation:
Since the ball is dropped at rest,
u = 0m/s
a = 9.81m/s²
Using
v = u + at
After 3 seconds,
v = 0 + (9.81)(3)
v = 29.4m/s