Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s
Lines of Force around an Electromagnet. ... The magnetic field strength of an electromagnet is therefore determined by the ampere turns of the coil with the more turns of wire in the coil the greater will be the strength of the magnetic field.
The Vagus nerve is one of 12 nerves. It is the longest of the cranial nerves, extending from the brainstem to the abdomen by way of multiple organs including the heart, esophagus, and lungs it is also known as cranial nerve X.
Explanation:
The internal heat sources for Jupiter and Saturn derive from primordial heat resulting from the initial gravitational contraction of each planet. Jupiter also generates heat by slow contraction, which liberates substantial gravitational energy. A significant part of Saturn’s heat comes from the release of gravitational energy from helium separating from the lighter hydrogen and sinking to its core. What one considers to be a star is a matter of definition, as we discuss in more detail in the chapter on The Birth of Stars and the Discovery of Planets outside the Solar System. While both Jupiter and Saturn generate much of their energy internally, they are not large enough (by a significant factor) to support nuclear reactions in their interiors, and so are not considered to be stars.