1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ede4ka [16]
2 years ago
15

Work out, giving your answer in its simplest form​

Mathematics
1 answer:
Svetach [21]2 years ago
5 0

Answer:

36

Step-by-step explanation:

⅔ ×3³/5

⅔×18/5

<u> </u><u> </u><u> </u><u> </u><u>1</u><u>0</u><u>×</u><u>5</u><u>4</u><u> </u>=<u> </u><u> </u><u> </u><u>5</u><u>4</u><u>0</u><u> </u><u> </u>

15 15

=36

You might be interested in
Solve to find the value for x in the linear equation: 3(−4x + 5) = 12.1. Use the distributive property: 2. Use the subtraction p
Brrunno [24]

Answer:

x =\frac{7}{12}

Step-by-step explanation:

Given equation,

3(-4x + 5) = 12

Step 1 : Using distributive of equality,

3(-4x) + 3(5) = 12

Step 2 : simplify,

-12x + 15 = 12

Step 3 : Using subtraction property of equality,

-12x = 12 - 15

Step 4 : Simplify,

-12x = -7

Step 5 : Using division property of equality,

x =\frac{7}{12}

5 0
3 years ago
Read 2 more answers
Compute the sum:
Nady [450]
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\&#10;S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\&#10;(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\&#10;\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\&#10;

but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=&#10;\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=&#10;\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\&#10;\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\&#10;S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\&#10;\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=&#10;(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=&#10;n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
8 0
3 years ago
Help me with this probability question for (7th grade math)​
ElenaW [278]

There is a 3/6 possibility for an even number to get chosen.

Might be wrong

bye

4 0
3 years ago
Read 2 more answers
The sum of three consecutive odd numbers is 57. What are the three <br> numbers?
RSB [31]

Answer:

The 3 numbers are 17,19 and 21

Step-by-step explanation:

Hope this helps!

3 0
4 years ago
What is the following sum in simplest form - see attached.
melomori [17]
You must first simplify the radicals by taking out any perfect squares.

√8  + 3√2  + √32 =
√4 * √2   +  3√2   + √16 * √2 =
2√2  + 3√2  + 4√2 =
9√2
5 0
3 years ago
Other questions:
  • Each time you click the "FLIP" button, the
    11·2 answers
  • In the construction of the incenter, why is step 5 necessary for drawing the inscribed circle?
    5·1 answer
  • Select the graph of the solution. Click until the correct graph appears. |x| = 2
    12·1 answer
  • Question<br> What is the median of the first nine positive integers?
    13·1 answer
  • Una sucesion aumenta de 0.5 en 0.5 cuales son los primeros 6 terminos si el inicial es uno ???
    6·1 answer
  • What are the coordinates of the vertex of y = –x2 – 12x – 32?
    6·1 answer
  • WHAT is the slope of the line that contains the points (-1, 8) and (5, -4)
    14·2 answers
  • If 4a^2 = 144 then a is?
    6·1 answer
  • Use the fact that the trigonometric functions are periodic to find the exact value of the expression.. . sin405 degrees. . tan40
    5·1 answer
  • 1. Is x + 8 a factor of b(x) = x3 + 18x2 + 80x? Determine using synthetic
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!