Metals :-
Group 1A - Alkali metals ( highly reactive metals)
Non-metals :-
Group 17 - Halogens ( highly reactive non-metals )
Answer:
The further an electron is from the nucleus. the greater its energy level.
Explanation:
When an electron is close to the nucleus, it is at as low an energy level as it can get.
We must put energy into an electron to pull it away from the attraction of a nucleus.
So, electrons that are further from the nucleus are at higher energy levels.
A hydrogen bond<span> is the electrostatic attraction between two polar groups that occurs when a </span>hydrogen<span> (H) atom covalently bound to a highly electronegative atom such as nitrogen (N), oxygen (O), or fluorine (F) experiences the electrostatic field of another highly electronegative atom nearby. examples h20</span>
<span>The answer is deceleration. Acceleration is the general term to refer to the change in velocity. Acceleration = change in velocity / change in time. When you want to highlight the fact that the change in velocity is a decrease in the magnitude, you can use the term deceleration, which means that the acceleration is negative.</span>
Answer:
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)
Explanation:
Data Given:
Moles = n = 3.2 mol
Temperature = T = 312 K
Pressure = P = ?
Volume = V = 87 m³ = 87000 L
Formula Used:
Let's assume that the gas is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for P,
P = n R T / V
Putting Values,
P = (3.2 mol × 0.082057 atm.L.mol⁻¹.K⁻¹ × 312 K) ÷ 87000 L
P = 0.0009417 atm
Or,
P = 9.417 × 10⁻⁴ atm
Or,
P = 0.0954157 kPa
Or,
P = 0.715677 mmHg (Torr)