The law of conservation of energy has not been broken, provided energy is released from the fission process.
<h3>What is the law of conservation of energy?</h3>
The law states that the total energy of a process is conserved. That is, the total energy or mass of a system before and after undergoing processing remains the same. However, some of the mass/energy can be converted to another form.
When a material undergoes fission, the sum total of the mass of the particles formed should be equal to the mass of the starting materials, provided that all other things remain the same.
However, if energy is released from the fission process, it means that some of the mass of the starting materials has been converted to energy and released to the environment.
More on the law of conservation of energy can be found here: brainly.com/question/20971995
#SPJ1
Answer:
Software Developer. ...
Database Administrator. ...
Computer Hardware Engineer. ...
Computer Systems Analyst. ...
Computer Network Architect. ...
Explanation:
<span> are composed of the fragments, or CLASTS. If PRE-existing </span>minerals<span> and rock. A </span>clast<span> is a fragment of </span>geological detritus,<span>chunks and smaller grains of rock broken off other rocks by </span>physical weathering.[2]<span> Geologists use the term CLASTIC </span><span>with reference to </span>sedimentary rocks<span> as well as to particles in </span>sediment transport<span> whether in </span>suspension<span> or as </span>bed load<span>, and in </span>sediment<span> deposits.</span>
The density of hydrogen : ρ = 0.0892 g/L
<h3>Further explanation</h3>
Given
mass of Hydrogen : 0.446 g
Volume = 5 L
Required
The density
Solution
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
The unit of density can be expressed in g/cm³, kg/m³, or g/L
Density formula:

Input the value :
ρ = m : V
ρ = 0.446 g : 5 L
ρ = 0.0892 g/L