Urinating respiration crying flooding
1.1214 mL will a 0.205-mole sample of He occupy at 3.00 atm and 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Using equation PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 3.00 atm
V= ?
n=0.205 mole
R= 
T=200 K
Putting value in the given equation:


V= 1.1214 mL
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Here is your answer
B. NaCl
_________________
In option A. Na isn't present.
In option C. there are two atoms of Na
So, option B is correct
HOPE IT IS USEFUL
Answer:
60-20=40km west because the direction Will favour whichever direction is bigger
Answer:
The molar mass is determined by applying the Ideal Gas Law, PV = nRT, where P is the pressure (in atm), V is the volume (in L), n is the number of moles of gas, R is the universal gas constant (0.08206 L∙atm/mol∙K), and T is the temperature (in K).
Hope this helps! :)