Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
Answer:
C
Step-by-step explanation:
30x20=600
Answer:
No
Step-by-step explanation:
VX = 4 spaces
UW = 3 spaces
Answer:
it's about 18 percent decrease**** so 20 percent to round up
Step-by-step explanation:
Easy peasy
the average rate of change in section A is the slope from (1,g(1)) to (2,g(2))
the average rate of chagne in section B is the slope from (3,g(3)) to (4,g(4))
A.
section A
g(1)=4(3)^1=12
g(2)=4(3)^2=4(9)=36
slope=(36-12)/(2-1)=24/1=24
section B
g(3)=4(3)^3=4(27)=108
g(4)=4(3)^4=4(81)=324
slope=(324-108)/(4-3)=216/1=216
section A has an average rate of change of 24
section B has an average rate of change of 216