Answer:
3. 2x+18=4x+26
Step-by-step explanation:
2(x+9)=4(x+7)+2
2x+18=4x+28+2
2x+18=4x+<u>3</u><u>0</u>
<em><u>The</u></em><em><u> </u></em><em><u>step</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>made</u></em><em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>error</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>solving</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>linear</u></em><em><u> </u></em><em><u>equation</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>step</u></em><em><u> </u></em><em><u>3</u></em><em><u>.</u></em>
Hope this helps ;) ❤❤❤
Procedure:
1) calculate the number of diferent teams of four members that can be formed (with the ten persons)
2) calculate the number of teams tha meet the specification (two girls and two boys)
3) Divide the positive events by the total number of events: this is the result of 2) by the result in 1)
Solution
1) the number of teams of four members that can be formed are:
10*9*8*7 / (4*3*2*1) = 210
2) Number of different teams with 2 boys and 2 girls = ways of chosing 2 boys * ways of chosing 2 girls
Ways of chosing 2 boys = 6*5/2 = 15
Ways of chosing 2 girls = 4*3/2 = 6
Number of different teams with 2 boys and 2 girls = 15 * 6 = 90
3) probability of choosing one of the 90 teams formed by 2 boys and 2 girls:
90/210 = 3/7
Answer:
2sin50 cos20
Step-by-step explanation:
We need to write sin (70) + sin(30) as a product. The formula used here is :

Here, A = 70 and B = 30
So,

So, the value of sin (70) + sin(30) is 2sin50 cos20. Hence, the correct option is (c).