There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
<h2>2) Copernicus rediscovered Aristarchus’s heliocentric model.</h2>
Before Copernican Revolution, people did believe in the ptolemain model that establishes the description of the Universe with the earth at the center having sun, moon, starts and planets all orbited earth. On the other hand, the heliocentric model establishes the sun at the center of the solar system and this starts with the publication of Nicolas Copernicus named <em>De revolutionibus orbium coelestium.</em>
<h2>5) Newton’s theories of gravity increased understanding of the movement of planets.</h2>
The revolution ended with Isaac Newton's work over a century later. As you well know, Newton was both a physicist and mathematician, better known for his prodigal work called <em>Philosophiæ Naturalis Principia Mathematica. </em>In this revolution, he is known for his laws of motion and universal gravitation increasing understanding of the movement of planets.
Sound is a form of energy in that it consists fluctuations of air pressure . The speed of the fluctuations is measured in cycles per second or Hertz (HZ)
Intensity is how large the fluctuations are, also known as amplitude and for the sound the unit is decibels of sonic pressure level (dB SPL)
Answer:
a
The x- and y-components of the total force exerted is

b
The magnitude of the force is

The direction of the force is
Clockwise from x-axis
Explanation:
From the question we are told that
The magnitude of the first charge is 
The magnitude of the second charge is 
The position of the second charge from the first one is 
The magnitude of the third charge is 
The position of the third charge from the first one is 


The position of the third charge from the second one is



The force acting on the third charge due to the first and second charge is mathematically represented as

Substituting values



The magnitude of
is mathematically evaluated as

The direction is obtained as

![\theta = tan ^{-1} [-0.63889]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B-0.63889%5D)


