Answer:
The angular acceleration of the pencil<em> α = 17 rad·s⁻²</em>
Explanation:
Using Newton's second angular law or torque to find angular acceleration, we get the following expressions:
τ = I α (1)
W r = I α (2)
The weight is that the pencil has is,
sin 10 = r / (L/2)
r = L/2(sin(10))
The shape of the pencil can be approximated to be a cylinder that rotates on one end and therefore its moment of inertia will be:
I = 1/3 M L²
Thus,
mg(L / 2)sin(10) = (1/3 m L²)(α)
α(f) = 3/2(g) / Lsin(10)
α = 3/2(9.8) / 0.150sin(10)
<em> α = 17 rad·s⁻²</em>
Therefore, the angular acceleration of the pencil<em> </em>is<em> 17 rad·s⁻²</em>
Answer:
h = 0.46 m
Explanation:
According to the law of conservation of energy:
Potential Energy Lost by Roller Coaster = Kinetic Energy Gained by Roller Coaster

where,
h = height = ?
v = speed at bottom = 3 m/s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>h = 0.46 m</u>
Answer:
Mass of object is 0.5kg
Explanation:
Given the following data;
Force = 6N
Acceleration = 12m/s²
Mass =?
Force is given by the multiplication of mass and acceleration.
Mathematically, Force is;
Where;
F represents force.
m represents the mass of an object.
a represents acceleration.
Making mass (m) the subject, we have;
Substituting into the equation;
Mass, m = 0.5kg.
Therefore, the mass of the object is 0.5kg
Answer:
<h3>The answer is 300 N</h3>
Explanation:
The force acting on an object given the mass and acceleration we use the formula
<h3>force = mass × acceleration</h3>
We have
force = 15 × 20
We have the final answer as
<h3>300 N</h3>
Hope this helps you
Answer:
Option B
Explanation:
The phase difference is found by subtracting the 2.3m for the receiver from the other speaker which is 2.9m hence
Phase difference= 2.9-2.3= 0.6