Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Answer:
31.321 rad/s
Explanation:
L = Tube length
A = Area of tube
= Density of fluid
v = Fluid velocity
m = Mass = 
Centripetal force is given by

Pressure is given by

The angular speed of the tube is 31.321 rad/s
Answer: 83.3 W
Explanation: I think, I’m not sure. If I’m wrong correct me ;)
Answer:
anyone know this or should i get my brother
Answer:
The required new pressure is 775 mm hg.
Explanation:
We are given that gas has a volume of 185 ml and a pressure of 310 mm hg. The desired volume is 74.0 ml.
We have to find the required new pressure.
Let the required new pressure be '
'.
As we know that Boyle's law formula states that;

where,
= original pressure of gas in the container = 310 mm hg
= required new pressure
= volume of gas in the container = 185 ml
= desired new volume of the gas = 74 ml
So,
= 775 mm hg
Hence, the required new pressure is 775 mm hg.