If an electron, a proton, and a deuteron move in a magnetic field with the same momentum perpendicularly, the ratio of the radii of their circular paths will be:
<h3>How is the ratio of the perpendicular parts obtained?</h3>
To obtain the ratio of the perpendicular parts, one begins bdy noting that the mass of the proton = 1m, the mass of deuteron = 2m, and the mass of the alpha particle = 4m.
The ratio of the radii of the parts can be obtained by finding the root of the masses and dividing this by the charge. When the coefficients are substituted into the formula, we will have:
r = √m/e : √2m/e : √4m/2e
When resolved, the resulting ratios will be:
1: √2 : 1
Learn more about the radii of their circular paths here:
brainly.com/question/16816166
#SPJ4
The intensity of the magnetic force F experienced by a charge q moving with speed v in a magnetic field of intensity B is equal to

where

is the angle between the directions of v and B.
1) Re-arranging the previous formula, we can calculate the value of the magnetic field intensity. The charge is

. In this case, v and B are perpendicular, so

, therefore we have:

2) In this second case, the angle between v and B is

. The charge is now

, and the magnetic field is the one we found in the previous part, B=2.8 T, so we can find the intensity of the force experienced by this second charge:
When you drop an object on the moon, it falls to the ground.
But it only falls about 1/6 as fast as it falls on Earth.
The work that is required to increase the speed to 16 knots is 14,176.47 Joules
If a catamaran with a mass of 5.44×10^3 kg is moving at 12 knots, hence;
5.44×10^3 kg = 12 knots
For an increased speed to 16knots, we will have:
x = 16knots
Divide both expressions

To get the required work done, we will divide the mass by the speed of one knot to have:

Hence the work that is required to increase the speed to 16 knots is 14,176.47 Joules
Learn more here: brainly.com/question/25573786
The kinetic energy of the electron is

where

is the mass of the electron and v its speed. Since we know the value of the kinetic energy,

, we can find the value of the speed v: