Answer:
√
8
≈
3
Explanation:
Note that:
2
2
=
4
<
8
<
9
=
3
2
Hence the (positive) square root of
8
is somewhere between
2
and
3
. Since
8
is much closer to
9
=
3
2
than
4
=
2
2
, we can deduce that the closest integer to the square root is
3
.
We can use this proximity of the square root of
8
to
3
to derive an efficient method for finding approximations.
Consider a quadratic with zeros
3
+
√
8
and
3
−
√
8
:
(
x
−
3
−
√
8
)
(
x
−
3
+
√
8
)
=
(
x
−
3
)
2
−
8
=
x
2
−
6
x
+
1
From this quadratic, we can define a sequence of integers recursively as follows:
⎧
⎪
⎨
⎪
⎩
a
0
=
0
a
1
=
1
a
n
+
2
=
6
a
n
+
1
−
a
n
The first few terms are:
0
,
1
,
6
,
35
,
204
,
1189
,
6930
,
...
The ratio between successive terms will tend very quickly towards
3
+
√
8
.
So:
√
8
≈
6930
1189
−
3
=
3363
1189
≈
2.828427
Answer:
The standard deviation of the age distribution is 6.2899 years.
Step-by-step explanation:
The formula to compute the standard deviation is:

The data provided is:
X = {19, 19, 21, 25, 25, 28, 29, 30, 31, 32, 40}
Compute the mean of the data as follows:

![=\frac{1}{11}\times [19+19+21+...+40]\\\\=\frac{299}{11}\\\\=27.182](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B11%7D%5Ctimes%20%5B19%2B19%2B21%2B...%2B40%5D%5C%5C%5C%5C%3D%5Cfrac%7B299%7D%7B11%7D%5C%5C%5C%5C%3D27.182)
Compute the standard deviation as follows:

![=\sqrt{\frac{1}{11-1}\times [(19-27.182)^{2}+(19-27.182)^{2}+...+(40-27.182)^{2}]}}\\\\=\sqrt{\frac{395.6364}{10}}\\\\=6.28996\\\\\approx 6.2899](https://tex.z-dn.net/?f=%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B11-1%7D%5Ctimes%20%5B%2819-27.182%29%5E%7B2%7D%2B%2819-27.182%29%5E%7B2%7D%2B...%2B%2840-27.182%29%5E%7B2%7D%5D%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B%5Cfrac%7B395.6364%7D%7B10%7D%7D%5C%5C%5C%5C%3D6.28996%5C%5C%5C%5C%5Capprox%206.2899)
Thus, the standard deviation of the age distribution is 6.2899 years.
Answer: y = 7.5
Step-by-step explanation:
Suppose that y varies directly with x
That is, y∝x
Convert y∝x to a full equation by introducing a constant k to the right hand side.
Therefore, y = kx
Given that y = 10 and x = 20
Substitute y and x in the equation above. We have;
10 = k(20)
10 = 20k
20k = 10
k = 10/20
k = 0.5
Since k = 0.5, the equation y = kx becomes y = 0.5x
Now, to find y if x = 15, substitute x in equation y = 0.5x
Therefore, y = 0.5(15)
y = 7.5
Answer:
65 degrees because tangent chord angles are half the size of the arc
X² - 4x + y² - 8y = 5
Complete the square:
x² - 4x + (4) + y² - 8y + (16) = 5 + (4) + (16)
→ (x - 2)² + (y - 4)² = 25
Center: (2,4)
radius: √25 = 5